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Introduction

This is the Final Report on Contract NAS2-3637, "Coding System
Design for Advanced Solar Missions.'" Work reported in detail in earlier
reports is summarized in the following section; that done on this phase
of the contract is then summarized in the next section, with detailed

results appearing in three appendices.

Summary of Earlier Reports

Shortly after the beginning of this contract, Ames carried out
in-house simulations which showed that efficiencies predicted theoreti-
cally for sequential decoding schemes [Phase II Report, Appendix A, 1966]
could be largely obtained with a relatively simply implemented code [In-
terim Report, 1966]. As simulations of the best of the competitive OED
schemes showed significantly inferior (2-3 db) performance, with no imple-
mentation advantage, Ames quickly focused all effort on sequential decod-
ing and pressed toward its implementation on future Pioneer spacecraft.

In previous reports [Interim Report, 1966, and Second Interim Report,
1967] we described our contributions to this effort, which mainly con-
sisted of detailed support in certain areas for the central development at
Ames. Besides the OED simulators, we wrote efficient machine language de-
coding programs for the SDS 910-920 and the IBM 7094; the principles were
described in the Interim Report, while the SDS program was flow-charted
and listed in the Second Interim Report. A convolutional encoder intended
to be suitable for incorporation into the spacecraft was designed and
breadboarded. In the Second Interim Report, we suggested possible ap-
proaches to the problems of input/output and timing synchronization, and
error detection. We wrote basic machine language programs for a number
of small general-purpose computers, in order to compare the speeds which
could be obtained. Finally, we did a detailed paper design of a special-
purpose sequential decoder for theé Pioneer application, to determine the
maximum easily attainable computation speed (1 ps) and cost ($10,000 for

materials).



Summary of Recent Studies

In the final phase of Contract NAS2-3637, which is the subject
of this report, we shifted our vision to the more distant future. We
assume that minimizing the power required to support a given bit rate
will continue to be the principal goal of the communications system
designer; we also assume that the error probability required will become
lower and lower as more and more data reduction is performed on board.

In the present study, we also have assumed the feasibility of coherent
demodulation, which today would imply data rates of more than 10-100 bps,
and have therefore been able to assume the applicability of the ideal

white gaussian noise channel model.

Under these conditions, sequential decoding schemes seem to be
capable of approaching the theoretically determined optimal efficiency
to within about a factor of 2, with an arbitrarily low undetected error
probability. Practically speaking, such schemes can be made about 3-4
db from optimum. Combined with this performance are systems advantages,
such as relatively simple on-board equipment, simple (PSK) modulation and
demodulation, moderate decoding requirements (much of which can be off-
line), and occurrence of errors in distinct clusters (frames), effectively
all of which can be detected. It therefore seems likely that sequential

decoding schemes will be the standard for some time to come.

However, that 3 db of inefficiency remains, and the question
arises of whether it is possible to improve on the performance of sequen-
tial decoding by going to some more complicated scheme. Such a scheme,
we feel, will very likely be some elaboration of sequential decoding, in
which the additional complication serves to modify the sequential
decoder's computational behavior, which is its fundamental limitation.

A particular example of such a scheme is already known —called by us
‘concatenation with sequential decoding', and by Falconer [1967j], who
studied the scheme in his doctoral thesis, 'hybrid sequential and alge-
braic'. It is easy to show that in principle concatenation can allow as
close to optimum efficiency as d;sired, and in fact to exhibit a scheme
which approaches within about 1 db of optimum without outrageous complexity

[Phase II Report, Appendix E, 1966]. In the presence of an urgent require-
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ment, one could proceed to implement such a scheme today; all the major
elements are well understood, and the principal task would be to settle
on specific strategies and parameters and evaluate complexity and per-

formance in detail.

In the work reported here, we have taken a more leisurely approach,
in an attempt to understand better what is going on, and perhaps to develop
a8 simpler scheme that the above, which seems in many respects brute force
and inelegant. Our work consisted of three principal parts, reported in
Appendices A, B and C. First, we have reviewed the fundamental causes of
the decoding behavior of a general class of decoders for convolutional
codes, which includes sequential decoders as a typical subclass, and have
developed new understanding about the cause of the computational distribution,
the character of significant noise bursts and the resulting error patterns,
and the effects of finite constraint length. Second, we have used these
results in the development of a point of view about concatenation schemes, -
and have used this point of view to develop a number of classes of different
schemes and to predict the most important aspects of their computational
behavior. Third, we have succeeded in substantially validating this point
of view by simulating a few simple concatenation schemes and comparing the

observed performance with predictions.

Appendix A is actually a rather complete review of what is known
about the performance of random tree codes (a convolutional-like code
suitable for analysis) with optimum decoders, a class into which sequential

decoders apparently fall. It contains:

1. Upper and lower bounds on the performance of tree codes, and
asymptotically exact expressions for the performance of random tree codes at

all rates.

2. A demonstration that, when converted into block codes, random
tree codes equal the performance of random block codes and are therefore

optimum block codes at high rates.

3, A demonstration that an optimum (maximum likelihood) decoder
for a tree code can be significantly simpler than that required for a

block code which has the same performance, and thus that in a fundamental
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sense tree codes are better than block codes.

4. A discussion of the character of error patterns with finite
constraint length codes, and of the noise bursts which cause them, showing

that for large constraint lengths a single type of pattern becomes dominant.

5. An optimum, variable-computation decoding algorithm for
large constraint length codes which exhibits a Pareto computational dis-

tribution and illustrates the causes thereof.

6. A consideration of the close connection between the event
of decoding error with finite constraint length codes and the event of

computational overflow.

7. An heuristic estimate of the computational distribution to

be expected with sequential decoding of finite constraint length codes.

8. Suggestions for sequential decoder operation, including

moderate constraint lengths and automatic resynchronization.

Appendix B depends primarily upon the observation in 4, above,
and shows how it may be used to predict the most important parameter of
concatenation-type schemes, the overall Pareto exponent. Appendix B con-

tains:

1. Justification for considering only a single type of noise

pattern in analyzing computational probabilities.

2. A number of different concatenation-type schemes, with
analysis of the Pareto exponent and rate loss of each. In every case
the rate loss can be made to approach zero while the Pareto exponent
of the concatenated scheme remains at some fixed multiple of the original

Pareto exponent.

Finally, some simulations intended to verify the analysis
techniques of Appendix B and yield quantitative indications of the results

to be expected are reported in Appendix C. It contains:

1. Descriptions of the basic sequential decoding schemes simu-

lated, and of two simple concatenation-type schemes.
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2. Computational distributions and error probabilities obtained
with these schemes in miliion-bit runs at varying Pareto exponents and
constraint lengths.

Z. An assertion that the analysis techniques of Appendix B and

the finite constraint length predictions of Appendix A seem substantially

valid, and consideration of some discrepancies.

4. A quantitative estimate of the Pareto distribution coefficient,
and, assuming its validity, a comparison of the decoder parameters required

to achieve certain efficiencies with and without concatenation.

In conclusion, what we now have is a good basic understanding of
sequential decoders, and the ability to predict fairly accurately the most
important features of the performance and complexity of proposed schemes.
What we do not have is an elegant, economical scheme with a large exponent
multiplier (performance improvement vis-a-vis ordinary sequential decoding);
at the moment we must be content with elaboration of the basic concatena-
tion scheme described above. With the exception of backwards-forwards
schemes with their moderate improvement, we also do not have the quanti-
tative results about any particular scheme which would be necessary to
proceed to implementation. Our recommendations would be to proceed on
these two fronts, with the distribution of effort between them depending
on the urgency of actually developing concatenation schemes for practical

application.
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APPENDIX A

REVIEW OF RANDOM TREE CODES

Introduction

The use of convolutional codes with sequential decoding is becoming
the standard method of obtaining the most efficient communication on mem-
oryless channels. Extensive analyses preceded this use, in a rather rare
example of communication theory inspiring a practical application. The
analyses have principally dealt with the Fano algorithm for sequential
decoding, and with a type of tree code called a random tree code, to be
introduced below; simulations have confirmed that the results of these
analyses are qualitatively accurate when applied to convolutional codes,
which are the tree codes of practical interest.

Two important recent papers by Viterbi (1967) and Jacobs and
Berlekamp (1967) have suggested that the predicted and observed perform-
ance of sequential decoding is principally due to the structure of the
random tree codes themselves, and would be observed with any of a broad
class of decoding algorithms. We are therefore motivated to study the
properties of random tree codes which depend on a minimum of assumptions
about the decoding process; this study shall be the subject of this ap-
pendix.

The most important results reported here are contained in the two
papers referenced above. What we have done is to extend these earlier
results in some directions and try to draw out some of their intriguing
consequences. We examine minutely the structure of random tree codes
and their performance with maximum likelihood decoding, obtaining exact
results for the error probability at all rates. These results agree
with the results obtained for sequential decoding and with a bound on
the best possible performance at’ high rates. We exhibit a maximum like-
lihood decoding algorithm which has in many respects the same type of
decoding complexity as sequential decoding, namely the Viterbi algorithm,

and by various modifications show that the correspondence may be made
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almost exact, at least at high rates and in the asymptotic limit. From

1 avvmweaacs -2 .. .

we make eral suggestions about how to use sequen-
tial decoding which are at variance with conventional practice. We also
hope by our analyses to have provided additional insight into how and why
sequential decoding works as it does, so that we can judge the effects

of possible modifications, and into what factors are responsible for its
limitations, so that we can perhaps surmount them.

Though providing insight into sequential decoding is our principal
goal, we develop some interesting subsidiary results. We show exactly
how tree codes are better than block codes by showing that, when made into
block codes, tree codes give just as good performance, but admit less com-
plex decoding algorithms, while when used naturally as tree codes, they
give better performance at the same rates. We show that this superiority
depends on suspending final decoding decisions for much longer than a
constraint length and is therefore not obtained with decoders which make
decisions on the basis of a single constraint length; we estimate what
the effective decoding constraint length must be if optimum performance
is not to be degraded. We show that most decoding error runs cluster
around a typical length which depends on rate, the clustering becoming
more pronounced with increasing constraint length. Finally, we give a
modification of the Viterbi algorithm suitable for a tree code which is
not resynchronized with a known constraint length of information symbols.

Before getting into the body of the paper, we establish some defini-
tions and review pertinent block code results. We then introduce tree
codes, show how they may be made into block codes, and discuss the rela-
tionships between their performances which necessarily result. We spend
some time with the concept of merging, which is central to the under-
standing of tree codes, and introduce a variant of the tree picture,
called a trellis. We proceed to define and anaiyze random tree codes,
determining their error probability with maximum likelihood decoding; we
then discuss the character of typ}cal error patterns. The Viterbi al-
gorithm is introduced and shown to be equivalent to maximum likelihood
decoding and therefore optimum. Variants of the Viterbi algorithm in-

volving changes in the decoding constraint length are presented, leading
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to a scheme very similar in behavior to sequential decoding. We review
the results of Jacobs and Berlekamp to establish the close connection
between the event of buffer overflow with an infinite constraint length
code with the event of decoding error with a finite constraint length
code. We consequently suggest that it may be profitable to match the
code constraint length to sequential decoder buffer size in order to mini-
mize output error probability; we estimate the computational distribution
of a finite constraint length sequential decoder, and suggest that buffer
overflows may be made rare without gross effect on the over-all error
probability. Finally, we show that there are no fundamental problems in
using an unterminated tree code with the Viterbi algorithm, and suggest

that the same may be true with sequential decoders.

Asymptotic Equivalence

We shall mostly be interested in expressions which are valid when
the constraint length or some other quantity becomes very large. It will
be convenient to introduce notation for equalities and inequalities valid
in this asymptotic range. Let A be the quantity that is becoming large,
and let P be the quantity we are interested in. P is said to be asympto-
tically equal to A_E if for any € > 0 there is some value of A suffi-

ciently large that

A'(Eié\ c P < A-(E-&\_) 1)

E is called the exponent of P, where the quantity A to which this expo-
nent has reference will be clear from the context. We introduce the nota-

tion:

. L3 (2)




-Ad-

Similarly, we say that P is asymptotically less than or greater than A~

if one or the other of the inequalities in (1) holds, and introduce the

=3

notation
. -E 'P - -
< - > .
P A ) 2A B
then, for example, we can write briefly

P=AF .{-f Pz=A® LA 'PEA-E (4)

Some Useful Quantities

We now introduce Gallager's (1965) Eo( ¢ ) function, which appears
repeatedly in the analysis of codes on the discrete memoryless channel.
Let the channel be defined by its input alphabet Xy its output alphabet
yj, and the transition probability matrix pjk giving the probabilities

k
tion p,, to be thought of as the probabilities of the input letters x

that if x, is sent, yj will be received. Define also an input distribu-

K
Then Gallager's function is defined as

_ L i .
Eotg\ = "LN 2&-[2“ PkPi‘U*?‘] R ’?-—O (5)

We shall find that many results can be conveniently expressed in

terms of the family of functions T'f (R), defined by

Te(RY = E (gD - ¢R (6)

b

where R is to be thought of as a code rate. As a function of R, Tf (R)
is a straight line of slope - Q which equals Eo( g ) when R=0 and which
equals 0 at R=Rg , where Rg is defined by



-A5-
Rg = Eo‘-?) /? . 7
In terms of R? we can rewrite (6) as

T (RY = ¢(Re-R) ©)

Gallager (1965) has shown that Eo(? ) increases and Rg decreases mono-
tonically with ¢ .
Figure 1 illustrates a typical set of T 9 (R) for §=€ , 1/2, 1,

2, and 1/€ . The channel used for illustration is
Eo(3) ¢t
E.(2)
Eol) ]
Ec(l\.) ~N
1., (&)
E.le) Te(t)
S
RV:— Qe C

Figure 1. Typical Tf (R) (Very Noisy Channel)
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the very noisy channel of capacity C, for which

E.(g) = %C. < ©)

Finally, the sphere-packing exponent ESP(R) is defined as the upper
envelope of all the functions T €'(R):

) - Wax
E;sp (‘L\ ex0

Te(R), (10)
Gallager has shown that the sphere-packing exponent can be written para-

metrically in terms of ¢ as

Es')(g) = Eo(f) -—?E:(g)‘)

REQY = Ejte), oy

where Eé(.? ) is the derivative of Eo(-f ) with respect to ¥
Some of these quantities appear sufficiently frequently to be given
special names. The most important are the channel capacity C, the compu-

tational cutoff rate Rco and the critical rate R defined by

mp’ crit’

C=E!(0) = R(0) = R ;

Rcomp - Rl;

(12)

RCrit Eé(l) = R(1).

Block Code Results
A block code of length N and rate R (in units of nats) for a dis-

crete memoryless channel is defined as any collection of M = exp NR se-
quences of N input letters, called the code words, X,
A received word y is any sequence of N output letters. A decoding

algorithm is any procedure for assigning a code word x to each received
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sequence; a decoding error occurs whenever the code word so chosen is

not the one actually transmitted. Shannon, Gallager, and Berlekamp have
shown (1967) that for N sufficiently large all block codes of rate R have
probability of error Pr( € ) bounded by

Pr(E) = exp -HEopt.(R)) (13)

where
Eopt (R) = Esp(R), R =R,

= To,(R) ) R< R, | 18

where ?x > 1 is defined by

- = - , Vo /1
e RS e b LT ],

and Eo( ), T Q (R), ESP(R), and R( e ) are defined in the previous sec-
tion by (5), (6), (10), and (11). A typical Eopt(R) curve appears in
Figure 2.

A list-of-L decoding algorithm for a block code is one in which L
code words x are assigned by the deéoding algorithm to each received
word y; a list decoding error occurs whenever the transmitted word is
not on the list. Shannon, Gallager, and Berlekamp (1967) also show that
if

L = exp NRL’ (16)
where RL is the list rate, then

Pr( € ) 2 exp - NE_ (R - R;). (17)

P
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E ()
T
EO(?)() Eofk'Lﬂ'\

Eo §1 ) ,6(_0.)

N
Rc‘r’\ t a(cv wp C

Figure 2. Important Exponents

ESP(R): Sphere-ﬁacking Exponent

Eopt(R): Best Possible Block Code Error Exponent

E(R): Error Exponent for Random Block Codes.
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Comparison of (17) with (13) and (14) shows that (17) is somewhat weaker
when L = 1 and R <€ R( gx). The sphere-packing exponent which appears
here is illustrated in Figure 2.

The above bounds give limits on how well one can do with any code
and decoding algorithm. Random block codes with maximum likelihood de-
coding meet these limits at the higher code rates. A random block code
is one in which the input letters of the various code words are picked
from a random ensembie in such a way that:

1. The probability that x, appears in any position of any code word

is Py > where the p, represent the input distribution.

2. The probability that X, appears in any position of any code
word, given the input letters which appear in that position in
any combination of other code words, is Py-

3. The probability that X, appears in any position of any code
word, given the input letters which appear in any combination
of other positions in any combination of other code words, is
Py -

These conditions can be met, for example, by choosing each of the N
letters of each of the M code words independently and at random from an
ensemble in which the probability of picking Xy is Py-

Next, a decoding algorithm is called maximum likelihood if it as-
*signs to a received word y that code word X for which the probability of
y given X Pr(y | xm), is maximum; a maximum likelihood decoder minimizes
the probability of error if the code words are equally likely, as can
generally be assumed,

For random block codes with maximum likelihood decoding, Gallager

(1965) proved that the probability of error is asymptotically equal to

P((C) = 2xp _UE(KB) (18)
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where
E(R) = Esp(r), R2R(A)=Rent)

(19)
= TL0R)F Rewp-R, ReRAU).

[Actually, Gallager only proved < , but the converse is easily shown by
the methods of Shannon, Gallager and Berlekamp (1967).] A typical E(R)

curve is illustrated in Figure 2. It is clear that above R(1) = Rcrit’

E(R) =E__(R), R2R (20)

opt crit’

so that in this range the random block code is asymptotically optimum.

Gallager's proof actually requires somewhat weaker conditions on the
random code than were stated above. In particular, Condition 2 may be
replaced by the following Condition 2' (pairwise independence):

2'. The probability that X, appears in any position of any code
word, given the input letter which appears in that position in any other
code word, is Py - '

That this weaker condition is permissible will be important in the

analysis of random tree codes, as was pointed out by Viterbi.

Decoding Complexity

With maximum likelihood decoding, the decoding complexity G is pro-
portional to the total number of code words M = exp NR, if the likelihood

for each code word must be computed. Certainly asymptotically
G = exp NR. (21)

We can therefore express the random block code error probability, for

example, in terms of the decoding complexity G as

_ E(e)

Pl€) = G ® (22)
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by substitution of (21) in (18). Thus while the error probability de-
creases exponentially with block length, it decreases only algebraically

with the decoding complexity, with complexity exponent E(R)/R.

Tree Codes

We now arrive at the subject of this review, tree codes. In this
sectibn we shall define tree codes, introduce terminated tree codes, and
show that the latter may be considered as block codes.

With block codes we made no assumptions about the data source, save
that there were M messages to be encoded. With tree codes it is neces-
sary to assume that the data source supplies an ordered sequence of source
letters S1» Sy 53...
Much data appears naturally as a serial stream of binary bits; these can

, where each letter comes from an alphabet of size q.

be considered as individual letters, in which case q=2, or can be taken
t at a time, say, in which case q=2t. A tree encoder codes into an or-
dered sequence of branches Xy where each branch consists of b channel

input letters, and one branch is put out for each source letter in. The

tree code rate r in nats per source letter is then equal to
r = 1ng/b. (23)

A tree code is further characterized by its encoding constraint
length ¥, which has the significance that the branch X, is a function
oy 2ty (Note that here the

units of ¥ are source letters, a convention which differs from that in

only of the Y+ 1 source letters S5

some of the convolutional coding literature; also, the constraint length
is for notational convenience one less than usual.) One observes that
by taking ¥= 0, b = N, q = exp NR, and thus r = R, we obtain a block
code of length N and rate R, so in this rather uninteresting sense block
codes are included in the class of tree codes; thus tree codes must bé
as good as block codes in general.
A much more interesting way of constructing a block code from a

tree code is to terminate the tree code as follows. Let the encoder in-

sert after every K source letters a resynchronizing sequence of ¥y fixed,




-Al2-

dummy source letters, also known to the decoder. The first branch X,

after the resynchronizing sequence is then a function only of the corre-
sponding source letter 1 and the dummy resynchronizing sequence, not of
any previous source letters; similarly, no succeeding branch depends on

source letters before s,. Consequently, the K +V branches Xyseevs Xgop

1

depend only on the K source letters s -Sgs SO that successive se-

100
quences of K +V branches form independent blocks. In this way, a ter-
minated tree code is made into a block code. The block code has length

N = b(K + v ) channel inputs, M = qK code words, and therefore block

code rate ,Q,“
| Ve
R= "7
- K
= =~ 24
K4V (24)

= Ar

where we have defined A, the synchronization rate loss, by

K
A= K+v (25)

In what follows, we are going to find expressions for the proba-
bility of error of terminated tree codes which will be exponentially de-
creasing with the constraint length v and will thus take the general

form

Pr( € ) = exp - Vbe(r). (26)

where e(r) will be the tree code exponent. Since these are also block

codes, we can also write (26) in terms of the block code parameters as

Pr(E ) = exp - NE(R), ' 27
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where N is the block code length, R the block code rate, and the error

component E(R), from comparison of (26) and (27), is equal to

_ \’Le(v‘)

= (\-—R} e(v) (28)

= (- %) QL‘r))

where we have used (24) and (25).

In Figure 3, we give the geometrical construction of E(R) from e(r)
implied by (28). We see that by proper choice of the synchronization
rate loss A in the range 0 € A <€ 1 we can obtain from a tree code with
tree code exponent e(r) a block code with any block code rate and expo-

nent pair on the straight line given by (28).

tree code
exponent e(r)

block code exponent of
terminated tree code,
with synchronization
rate loss A

(\-Nel)

Figure 3. Block Code Exponent vs. Rate Achievable

with a Terminated Tree Code of Tree Code Rate r.




This relationship between tree code and block code exponents is very
important. As an example of its power, we now derive a bound on the tree
code exponent, which depends on the fact that the terminated tree code
considered as a block code cannot have a block code error exponent better
than Eopt(R)’ the error exponent of the best possible block code. We
recall from (14), (10), and (6) that

Ot fx

T et $ete [5(53 g\Q]

Eope (R)

(29)

where Oy Was defined in (15). Let us then determine the maximum possi-
ble tree code exponent for some tree code rate r. First, let ?(r)

be the ¢ such that R? = r, and suppose r Z R?x , So that ?(r) < €
Recall that the rate R for which the maximum in (29) occurs at e = ?(r)
is given by R[ €>(r)] = Eé[?(r)]. Define the optimum tree code exponent

®opt (1) bY

Copt (M) = Bl @], Ro = T=C. (30)

We now show that the actual tree code exponent e(r) must be bounded by
eopt(r)' For suppose that
e(r) > E [ @(n)];

(31)

= R‘,(,.) ')

then a terminated tree code of block code rate R[ f:(r)] would have, from

(28), the equivalent block code exponent
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EiR[qu\]} - g‘ _ @E;Lﬂ}} et
> { | - “EE&EE:}};% EFo[J§(~’f)

E, [?(vﬂ - L) R[gm‘) (32)

where we have substituted (31) and (7) and used the definition of

R[ f(r)]. But to have E ? R[ .? (r)]i > Eopt ‘iR[ f (r)]} is impos-
sible. Thus

e(r) £ eopt(r)’ R 2 x <r £C. (33)

At low rates, it is easy to see by the same reasoning that the maxi-

mum tree code exponent is the constant

eopt(r) = eopt(Rf’x) =Eo( f’x)’ OSrsRS:x, (34

for otherwise we would be able to obtain a zero-rate block code with ex-

ponent better than Eo( f’x) = E__(0). Thus with the parametric expres-

opt
sion implied by (31),

Copt (€ ) = Eg(g)
(35)
I‘(?) = Rf ’
we have completed a bound on e(r) for all rates. This bound was obtained

by Viterbi (1967) through a different argument.
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Undoubtedly the easiest way to understand this argument is to ex-

mine the associated

= “opt Eop (

This construction, which is the inverse of that of Figure 3, appears in
Figure 4. From each of the tangents to the Eopt(R) curve, we obtain the
point on the eopt(r) curve which completes the rectangle. It should be
obvious that any tree code exponent lying in the region above the eopt(r)
curve would give by the construction of Figure 3 a block code exponent

which would somewhere lie above the Eopt(R) curve.

E.(e.)

Figure 4. Construction of eopt(r) from Eopt(R) Curve
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The Merging Concept in the Analysis of Tree Codes

The central concept to be grasped in the analysis of tree codes is
that of merging. Two source sequences s and s' are said to be merged at
branch i if the two source sequences have the same ¥y + 1 letters in the

positions i - through i:

si' = si" i-y ¢ i'<€ i, (36)

By the definition of constraint length, if s is merged with s' at branch i,
the input letters in the branches X5 and x{ of the corresponding code

words must be identical. For example, in a terminated tree code, all
source sequences with the same first letter are merged at the first branch,
and all with the same last letter are merged at the (K +%V ) th (last)
branch.

A corollary concept is that of the unmerged span, which is defined

with reference to two particular source sequences, say s and s'. The
first unmerged span U1 contains the indexes of the source letters in the
span from the first letter in which s differs from s' to the last letter
of the first subsequent string of ¥ consecutive letters in which s agrees
completely with s'. Thus over the first unmerged span s and s' are un-
merged, but they are about to merge at the end of the span. The j th un-
merged span Uj then contains the indexes of the source letters in the
span from the first letter not in Uj-l in which s differs from s' to the
last letter of the first subsequent string of y consecutive letters in
which s agrees completely with s'., It is obvious that

1. The unmerged spans are disjoint;

2. The unmerged spans contain the indexes of all branches for which

s and s' are unmerged.

Thus with the concept of unmerged spans we partition the set of
branches at which s and s' are unmerged into disjoint subsets. Each con-
sists of a consecutive string of.at least ¥ + 1 branches; the spans may
or may not be separated by merged segments.

The principal utility of this concept lies in the observation that

the log likelihood ratio of the code words x and x' corresponding to two
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source sequences is equal to the sum of the log likelihood ratios over
he unmerged spans. For let y be the received word and Yio the part of
the received word corresponding to the i th branch X; of the transmitted

word; then

vav(:d\\x,)3 .5 [ILASTLLD)
Pv(ka X L ‘PV(“&L\X{)
(37)

=5 2 | ?«(jglx;\
L LeU; )
§ [] ?"("di“"c)
since the branch log likelihood ratio is zero for all i for which s and
s' are merged and therefore x, = xi.
Now let us suppose that the code word actually sent is x, but that
a maximum likelihood decoder chooses some code. word x!' f x. From (37)

we have immediately

Z é{) QAA ’PM < A (38)
6 Relgan)

But the fact that x' has likelihood greater than all other sequences x"

implies the stronger statement

teJ,; P Cu\y! ~ 3 aiA d’-
For suppose the inequality of (39) is not satisfied for some Uj; that is,
over the j th unmerged span the correct code word x has greater likelihood
than x'. Consider then the source sequence s" which is equal to s over
the span Uj and to s' elsewhere; the corresponding code word x'" will equal
X over Uj and x' elsewhere, and will therefore have greater likelihood

than x' if (39) is not satisfied.
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Consequently, when errors occur with tree codes, it is natural and
convenient to think these as separate error events, each one correspond-
ing to a particular unmerged span Uj' Error events may be of any length
and contain any number of symbol errors, but do have a definite beginning
and end. Intuitively, the number of error events will be proportional to
the code length, and one should think not of the probability of error per
block, but the probability of error per branch, defined as the probability
of an error event starting (or ending) at any particular branch.

When we consider terminated tree codes as block codes, however, we
shall be interested in block probability of error. Then the following

lemma, which foilows directly from the above discussion, will be useful:

Lemma: There will be a decoding error with a terminated tree code if and

only if some incorrect word which differs from the correct word only over

a single unmerged span has greater likelihood than the correct word.

For suppose the word actually decoded has J unmerged spans with re-
spect to the correct word; by (39) the likelihood ratio over each of
these spans will be less than one, so that each of the J words differing
from the correct word over a single one of these spans will also have
greater likelihood than the correct word.

The merging concept suggests a change in the way we picture tree
codes of finite constraint length. Customarily tree codes are depicted
graphically as trees, with qi possible transmitted branches at branch i.
Taking into account that sequences do merge with one another, however, we
arrive at a structure more like a trellis, with no more than q v+l pos-
sible transmitted branches at any one branch. The difference is illus-
trated in Figure 5, for a binary tree code of constraint length 2 termi-
nated after five information bits. In both the tree and the trellis pic-
tures the representation of any of the 32 particular source sequences of
5 information bits followed by 2 zeroes is the path through the graph
labelled by the corresponding bits; in both pictures double lines indi-
cate the representation of 0100000. The code would be totally specified
by labelling each branch with the appropriate channel inputs. The trellis

picture recognizes that since 0100000 merges with 0000000 after the fourth




-A20-

Figure 5. Terminated Binary (q=2) Tree Code with % =2, K=5
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Figure 5b. Trellis Picture (Taking Account of Merging)
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branch, the corresponding transmitted branches must be identical for the
two code words.

These pictures suggest making up a maximum likelihood decoder out of
string, as follows. For each branch, cut out a piece of string of length
- 1n Pr(yi\ xi), where yi is what was received for branch i and X; is
what would have been transmitted if the actual code word included that
branch. For a tree decoder, attach all these pieces of string together
as in the tree picture of Figure 5a. Hold the resulting bundle at the
tree origin, let all the strings hang down, and pick out the terminal
node which is highest; this will be the node corresponding to the shortest

path through the tree, thus to the minimum value of
- S1n Qr(yil x;) = - In Pr(y\x),

and thus to the most likely code sequence. Similarly, for a trellis de-
coder, attach the pieces of string together according to the trellis
topology, as in Figure 5b. Pick up the resulting bundle at the two end
points and pull them apart until some path becomes taut; this is again

the path of minimum length and hence of maximum likelihood. All less
likely paths will dangle down from the most likely path in loops corre-
sponding to unmerged spans. Suppose, for example, that the code word
corresponding to 0000000 is actually sent, but that 0100100 is the sequence
of greatest likelihood. These two paths alone might look in the string

decoder 1like

The discussion above simply pointed out that the over-all block decoding
error ought to be thought of as two distinct error events, one correspond-

ing to each loop, and that the incorrect sequence has to be more likely
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than the correct one over each event individually. It is obvious from

ne picture that both 0100000 and 0000100 are also more likeiy than

Random Tree Codes

A random tree code is one in which the b channel inputs to be as-

Vvo+1 possible combinations of

signed to each branch for each of the q
Y + 1 preceding source letters are chosen independently of each other
and of all other channel inputs at random according to the input dis-
tribution Py- Thus channel inputs in different positions are totally
independent; channel inputs in the same position in two different code
words are either identical or totally independent, according to whether
the two code words are merged or unmerged at that branch. In the trellis
picture, the channel inputs for each distinct branch are picked randomly
and independently.

We now compute the block error probability of a terminated tree code
with maximum likelihood decoding, which of course remains the optimum de-
coding technique. By the lemma of the previous section, an error occurs
if and only if some code word differing from the correct word only over
a single unmerged span has greater likelihood than the correct word. We
shall consider separately the sets S;;1, defined to consist of all such
code words (or the corresponding source sequences) for which the single
unmerged span contains branches i to i', 0 £i<€ K, i +V €3i' €K+ .,

First we determine the size lsii" of the set Sii" Since all
members terminate in the same ¥V source letters, there are only i'-i+l1-V
source letters in which they may differ, so that
I < it-i- +1.

s

i (40)

On the other hand, the set Sii' certainly contains all words which have
a source letter different from that of the correct sequence at the i th

position, the (i'- V) th position, and at the (i+jV ) th positions,

i_ ¢ [ < L ¢ (41)
c s v 1
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therefore at least

. N oL
ISl 2 qUrtevd 15 -4 (42)

9

It follows that asymptotically

(. -—L\'&
I Sial = qv( -1) . (43)

Now all these code words will be pairwise independent of the correct
code word over the span from branch i to i', which includes (i'-i+l1) b
channel inputs. The set Sii' may therefore be thought of as a random
block code meeting the three conditions 1, 2', and 3 specified earlier,

having length N=(i'-i+l1) b, M = ‘Sii'\ code words, and therefore rate R

R .

- v(\—g-\»&-‘i\bq
(= 4V,

=

where we have recalled that the tree code rate r = 1n q/b, and defined

given by

(44)

Y
W=ti-—,. (45)
A

For such a random block code, we know that the probability of decoding

to one of the incorrect words is given by

?‘f{;l (e) = 2xp — NE(R)

I

exp — _" E(’*‘f) , (46)

a—

= €xp ——vbe(q'k3)
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where we have defined the tree code exponent e(r, ) as

ECv)

1— (47)

elr, W) =

In Figure 6 we give a graphical construction of e(r, ¢4 ) as the value
at R = 0 of a straight line drawn from r through the E(R) curve at the

rate R = wr.

eleywI N

E (pr)

| ]
0 pror
Figure 6. Graphical Construction of e(r, \ )

We now ask for what value oi:: (T Prii,( € ) is maximum, or e(r,‘»)
is minimum. "It is obvious from the construction that for r £ R1 = Rcomp
the minimum value of e(r, p~) occurs for = 0, where e(r,0) = E(0) = Rcomp’
and that for r 2 Rl’ the minimum occurs when the straight line is tangent
to the E(R) curve. We know that if r = R? , this tangent has the equa-

tion
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Tg(R)=Eo('§)‘QR; (48)

therefore the minimum value of e(r,rgj is Eo( g ). In summary, if we

define

e(r) = min e(r, ),

(49)
0epsl
then for low rates
= = £ = s
e(r) = E(0) Rcomp’ r £R Rcomp’ (50)
and for high rates, we have
e(r) = Ej(e )
(51)
>
r=Rg » T2 Ry

We immediately recognize this latter expression as equal to that of (35)
for eopt (r) when r2 Rl.
Now let us show that e(r) is actually the random tree code error ex-
ponent. The over-all probability of decoding error for a terminated tree
code is lower-bounded by the probability of decoding incorrectly within
any set Sii,,‘and upper-bounded by the sum of the probabilities of decod-

ing incorrectly in all sets, by the union bound:

W Ky
Prul8) £ Pele) £ = Z Pegle). (52)
VR QERECY LY

But from the discussion just previous, the largest value of Prii,(fL) is

asymptotically equal to

Prii,(E_)max = exp - ¥be(r), (53)




and if K is large enough there exists an i and i' such that this maximum

is achieved. Hence we can say

Pro; (& )y, € Pr(€) £ k% pr, 1,(6) (54)
and if K increaﬁes less than exponentially with V ,

Pr(€ ) = exp - Vbe(r) (55)

for a terminated tree code. For a nonterminated tree code, (55) contin-

ues to apply if we define Pr(§ ) as the probability of error per branch,

as can be seen by repeating the above argument with i or i' fixed.
Another suggestive expression for the tree code error probability

comes from substituting for b in (55) to obtain

Pr(€ ) & Q- Y e(r)/r (56)
Letting f>(r) be the P for which r = R g and reéalling that e(r) =
E [ 1 (r)] for r 2 R , (56) becomes

pr(£)iq ¥ € (M rZR. (57)
At lower rates e(r) = R1 = Rcomp and (56) becomes

Pr(€ ) tq YRUT r <R, (58)

Consequently, for all rates the random tree code exponent is known
exactly and given by (50) and (51), just as the random block code expo-
nent is known for all rates. Further, it is clear that if the terminated
random tree code is considered as a block code, then by the construction
of Figure 3 the equivalent block code exponent obtainable is, using (50)
and (51),

B> = ey  LEGp) -gR])

(59)



-A27-

which is precisely the random block code exponent. Third, for r Z R, =

1
Rcomp’ the random tree code exponent is equal to the optimum tree code
; : > =
exponent eopt(r) given by (33), just as for R2 R(1) = Rcrit the random

block code exponent is equal to the optimum block code exponent; thus
at high rates random tree codes are a solution to the tree code construc-
tion problem. Finally, when considered as a block code, and with proper
choice of the synchronization rate loss A , the terminated random tree
code has a block code exponent equal to the optimum block code exponent
for block code rates R 2 R(1); thus at high rates random tree codes are
a solution to the block code construction problem.

In conclusion, with proper choices of parameters, terminated random
tree codes are just as good in performance as random block codes, and
are therefore optimum block codes wherever the latter are optimum. How-
ever, so far we have assumed maximum likelihood decoding, so that decod-
ing complexity is presumably also exactly equal to that for random block
codes, so it is not yet clear whether tree codes offer any advantages.
Subsequently we shall see that their trellis structure permits a decoding
algorithm much less complex than that for block codes, so that when con-
sidered as block codes they have a complexity advantage. This decoding
algorithm will suggest, however, that tree codes are better not termi-
nated, and when used in this way tree codes will be shown to have a per-
formance advantage as well. Before we proceed with these principal themes,
however, we pause briefly to consider the character of error events with

random tree codes, as is natural at this point.

Character of Error Patterns with Random Tree Codes

We have seen that the probability of error within unmerged spans
Sii' of length v/(1- W) is given by

Pr",(&)éexp- v‘b[E(‘:ﬁ-r)/(l -1 (60)

Such an error results in an error sequence of length V/(1- p)-V =
\)r-/(1—r~), which is equally likely to be any of the unmerged sequences .
of that length. If the random tree code is very long, then, we would ex-

pect to see error sequences of length V- /(1- ) at about the relative
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frequency per branch given by (60).

The construction of Figure 6 determined the F‘O
nent in (60) was minimum. Error sequences of length near V}Lo/(l- M’o)
are therefore going to occur most frequently in the decoded output; be-
cause of the exponential character of (60), error sequences of substan-
tially different W are going to occur with negligible frequency for large
constraint lengths ¥ . We can say a little bit about the range of
which is interesting. Define error sequences of length vpM/(1- "”) as

rare if

P ()

<
¥>r}~°(E_\ b4

(61)

where A is any constant; this is equivalent, from (60), to

VL)E(’A.V\ \)\OE( r\
_ = ’ N 2 lw A ) 62
(A=) =) (62)
Let
E('A.V)
Flw) = O—pdv (63)

then in terms of a new constant B, (62) can be expressed

¥(p—3 - f-'(p.n) 2 B/v. (64)

Let us then inquire into what happens when ¥ becomes large. We can ex-

pand f(pa) in a Taylor series about P"o to obtain

PO - ) + Qoo ) + i gy
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But at TON the first derivative of f( g ) is zero:

‘S:I(M\: Y‘E,(}A&V\ " ELH\;"‘)
(\"Mo\ \g ( \“MQ\IV—

= - v N (“M\Vs (66)
C \—N\r QBT e '

= O

)

where we have used the fact that ~, is chosen so that
E( 'Lor) = (1- Mo)rf > -Q being the slope of the line from r to E( 'gr).
Substituting (66) and (65) into (64) yields

B
(k-ho)> 2 %\7 > (67)

where we suppose YV is large enough that higher-order terms in (60) can

be neglected. The range of ® which satisfy (67) is therefore propor-

tional to \)'1/2; the range of error sequences which are not rare is con-

v1/2

sequently proportional to

sequences tend to have lengths near v’*o /(1- p.o), although the ab-

solute range increases, in the same way as the sum of a large number N of

As ¥ increases, therefore, most error

random variables clusters more closely about the N times the mean, though
the dispersion is increasing proportional to IN.

For a tree code of rate r = R_ 2 R
/
_ Egle)
- V. (68)
S

1,

so that the typical length of error sequences is

N Eag)
Rg"Eé(g\ (69)
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In particular, if the tree code rate is R, = Rcomp’ then typically error

VR .7 (70)

= F!
where RCrit Eo(l).

The Viterbi ﬁlgorithm

We now show that the structure of tree codes permits a decoding al-
gorithm which gives precisely the same results as maximum likelihood de-
coding and is therefore optimum, but which has complexity proportional
only to &V , rather than to the qK required by maximum likelihood de-
coding of a terminated tree code. That something like this is possible
was foretold by our string decoders, where the number of pieces of string
required was proportional to qK for the tree structure, but only to d’
for the trellis.

The critical observation to be made is the following. Let s and s'
be two input words which agree for the span of ¥ consecutive letters
ending in i; that is, which are either merged at branch i or which have
an unmerged span terminating at i. Let s be the one which has greater

likelihood up to branch i:

ib Tk( U\XV\
i_ Lw 1 > i. 71)
t'=1 Pr(“;.\)(z,\

Then s' cannot be the choice of a maximum likelihood decoder. For s'
will always have less likelihood than the input sequence which agrees
with s up to branch i and with s' thereafter, since the corresponding
code word will be identical to x' beyond branch i, and from (71) will
therefore continue to have greater likelihood forever.

Let us rephrase this observation in terms of our trellis structure,
and our trellis string decoder. Suppose we set up the structure only

out to branch i, and pulled on one of the qv nodes at that depth and
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the initial node, thus finding the shortest path out to that node.
Clearly any other path dangling down in a loop from the shortest path is
not going to be a part of the path finally chosen; thus we can take out
scissors and cut away any such loops without any possibility of discard-
ing the most possible path. If we do this for all q’ nodes, we shall
be left with only one path from the initial node to each of these q’
nodes, which set will now form a true tree, with many branches missing,
but no loops. This operation can be repeated for each branch in sequence,
until one comes to the final node, at which time only one path will re-
main, necessarily the shortest one of all and thus the optimum choice of
a maximum likelihood decoder. This is the Viterbi algorithm.

Returning to the world where decoders are built with computer com-
ponents rather than string, let us restate the algorithm. The decoder
operates in a series of steps, one for each branch past branch v . At
the step associated with branch i, for each of the q" possible strings
of source letters of length y , it chooses the one input sequence which,
among all those which have that particular string of ¥ letters ending at
branch i, has the greatest likelihood up to branch i. At the end of any
step, therefore, it retains a list of only qg possible sequences up to
branch i; this determines the size of the decoder memory. It follows
that at the next step, there will be only q sequences to be compared in

each class, so only q +1

likelihoods to be computed in all. It is
therefore evident that the complexity of the algorithm is indeed asympto-
tically proportional to dv , if the length of the sequences does not
grow exponentially with y .

This algorithm may never actually make a final choice until the tree
code is terminated, although a choice can be imposed after a while with-
out any loss in performance, as we shall discuss later. Should the tree
code be terminated, however, the algorithm automatically converges on a
single choice, since it need not consider words which do not agree at the
end with the V -letter synchroﬁizing sequence, and therefore at the step
associated with the branch K +¥ it chooses the one input sequence which,
among all those ending with the synchronizing sequence, has the greatest

likelihood over the whole block. This sequence must be the same sequence
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as would be chosen by a maximum likelihood decoder, since the only words
ever discarded are those which couid not possibly be the choice of a maxi-
mum likelihood decoder. The algorithm is therefore optimum--Viterbi too
modestly called it suboptimum but asymptotically optimum--and consequently
we know the error probability which can be obtained with its use.
Expressions which give the probability of error Pr( € ) and decoding
complexity G when random tree codes are used with the Viterbi algorithm

are therefore
Polg) = { 1 ,

(72)

G

\l-
=D

where we have reproduced (57) and (58). The probability of error is

therefore given directly in terms of the decoding complexity by

- e ) .

(73)
G—-R‘/r , e Ry,

121 (f.) =

Again the probability of error decreases only algebraically with complex-
ity, as with maximum likelihood decoding of block codes. However, because
the complexity is less with tree codes, the exponent is greater. For a
direct comparison of exponents, compare a block code of rate R, error ex-
ponent E(R), and therefore [from (22)] complexity exponent E(R)/R, with

the terminated tree code of the right tree code rate r, and the right A

R
to give an optimum block code of rate R [that is, if R=Ec'>(? ), rR=R? 1,

which will have complexity exponent §>(r this comparison is made

)s
R
graphically in Figure 7. Even with the allowance for synchronization loss,
the comparison strongly favors the tree code, the more so the closer the
rate approaches capacity. Obviously the comparison would be even more

favorable to the tree code if we let the block length increase indefinitely.
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Figure 7. Comparison of Block and Tree Code Exponents
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so that r approached the block code rate R, since the complexity and proba-

L -

bility of error depend only on ¥ and r, and not on the biock length; the

]

we would get an exponent equal to g»(R), the 1 for which R=Rg , as is
also illustrated in Figure 7. Again, we are led to feel that although
random tree codes can be used as optimum block codes, it is better not to
terminate them, or at least to let the blocks between synchronizing se-
quences become very long. Though it is true that in this case the equiva-
lent block code exponents go to zero, one is usually more interested in

probability of error versus complexity than versus block length.

Mismatched Decoding Constraint Length

Let us now suppose that the decoder uses the Viterbi algorithm ap-
propriate for a code of constraint length V¥V , but that actually the en-
coder constraint length is some ¥' not equal to ¥ . What will happen?

First, suppose V' is less than ¥ . A code of encoding constraint
length ' may be considered as a poor example of a code of encoding con-
straint length v, if y'e VvV , for indeed each branch depends on only
the ¥ + 1 preceding input letters. Thus the Viterbi algorithm remains an
optimum maximum likelihood decoder for the shorter code; the mismatch re-
sults only in increasing the decoding effort to q“V , rather than the q '
which would be sufficient.

Second, suppose V' is actually greater than ¥ . Consider first
the case in which the decoder arrives at branch i' having made no previ-

4 retained code se-

ous decoding error, which is to say that among the q
quences one is éctually correct. The preceding analyses, which applied
when the encoding constraint length was ¥, showed that an error occurs
at branch i' if and only if over an unmerged span which terminates at i'
an incorrect word has greater likelihood than the correct sequence--that
is, if and only if among the set of words which agree with the correct
word in the lasty places, there is one better than the correct one, so
that the algorithm will choose it. But the situation is identical if
the encoding constraint length is actually greater than ¥ but no previous
error has been made, for an error is still made if and only if among the

set of words which agree with the correct word over the last ¥ places,
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one is better than the correct one, and each word in this set is identi-
cal to ihe correct word up to the beginning of the unmerged span and inde-
pendent of it thereafter, just as before. It follows that the probabi}ity
of error, given no previous decoding error, remains

-~

Pr(€ ) = exp - Vb e(1), (74)

where 'y is the decoding constraint length. But then the block probabil-
ity of decoding error is also given by (74), since it is no greater than
K times the branch probability. In sum, when ¥' and  are the encod-

ing and decoding constraint lengths,

Pr( ¢ )

exp - Y" be(r),
(75)
vn

min ( ¥V, ¥').

What does happen after a decoding error? Until by some chance one
of the qv survivors at some step agrees with the correct word in the
last <+ ' positions, all further choices will be between sets of incor-
rect words, so that all subsequent likelihoods would be expected to be
small on the average. Even when by some chance a surviQor does truly
merge with the correct word, it may very well succumb in later compari-
sons, since over its unmerged span it may have accumulated a very poor
likelihood. Only when at some subsequent point are all survivors simul-
taneously remerged with the correct path at some branch is the decoding

process truly resynchronized.

A Sequential Viterbi Algorithm

The considerations of the previous section lead us to propose the
following algorithm, suitable for a code of very large, essentially in-
finite encoding constraint length. We rely on the fact that in this case,
if a decoding error is ever made, it will sooner or later become obvi-
ous, and any sensible criterion will detect the occurrence of the error.
Then begin by decoding with a Viterbi decoder suitable for some small

constraint length \?o. If an error is ever detected, begin again with a
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Viterbi decoder of some larger decoding constraint length \11. Continue
in this way through a series of increasing constraint lengths until the
whole block is decoded. Assuming perfect detection, the probability of
error will be zero. Assuming that the length of the block is not expo-
nentially large, the probability of having to invoke a decoder of decoding

Y.  is the

constraint length greater than \’i and hence complexity G z q
probability of decoding error with decoding constraint length ~vi, or,

from (56),

Pr (G2 q¥t ) =gq Yo e@/r
(76)
or, if r2 R, = R , from (57),
1 comp
3 .- e ()
prczL =L ¢, > R eomp” (77)
where ?(r) is the 4 for which r = R? . This is precisely the behav-

ior characteristic of sequential decoding for rates greater than the com-
putational cutoff rate; the exponents are identical. By thus ekhibiting
an algorithm which is so seemingly different from the sequential decoding
algorithms, yet which nonetheless has the same distribution of decoding
complexity, we further confirm the observation of Jacobs and Berlekamp
(1967) that such a distribution is characteristic of optimum sequential
tree code algorithms generally and not just of sequential decoding. Of
course, this particular algorithm is not practically attractive.

Below R1 = Rcomp’ our present results enable us to say only that

. -Rl/r
Pr (G2 L) =L , T €< Rcomp' (78)
This is sufficient to show that below the computational cutoff rate the
exponent exceeds 1, but is not as strong as the result known for sequen-
tial decoding, namely that the e¢xponent continues to equal 4 (r), at
least at rates r = R () where ? (r) is an integer. We conjecture that
the Viterbi algorithm could be modified to yield this performance by re-

taining at each step of the algorithm, among each set of words having
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identical source letters in the last ¥ branches, the L with the greatest
likelihoods, rather than just the single best. However, the proof of
this requires a list decoding result for tree codes, which relates to

the block code list result by the construction of Figure 3; such a result
can be proved if we ignore the fact that incorrect sequences may merge
among themselves, but so far not otherwise.

These results suggest that the event in which the decoding complex-
ity (computation) required is greater than qv is identical to the event
in which a decoding error would be made if the encoding constraint length
were indeed only ¥ . In the next sections we discuss some list decoding
results of Jacobs and Berlekamp which qualitatively support this supposi-

tion, and draw a moral for sequential decoding.

Results of Jacobs and Berlekamp

Jacobs and Berlekamp show that no sequential algorithm can have a
complexity exponent better than Q (r) by making the following argument:

1. Let a sequential algorithm be defined as one which examines the
possible code sequences up to branch i in an order which does not depend
on received branches beyond i, and let its complexity be at least as
great as the number of sequences so examined before coming to the correct
sequence,

2. An algorithm which examines sequences in order of their likeli-
hoods will on the average examine fewer sequences before coming to the
correct sequence than an algorithm which examines sequences in any other
order. '

3. The probability that the complexity will exceed L is therefore
at least as great as the probability that the correct word will not be
among the words with the L greatest likelihoods, or thus that an error
would be made with list-of-L decoding.

4. The truncations of all possible code sequences to branch i form
a block code of length N=ib,with‘M=qi different words, and therefore with
rate R given by

(79)

1]
s ]
-
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the tree code rate.

A
[
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5. The probability of list decoding error wit

rate r and a decoding list of size
L=exp (1-a4) Nr, 0 € < 1, (80)

is bounded by

Pro. (€) 2 exp - NESP( p1), (81)
from (17).
6. Thus, substituting (80) into (81),
— E;ettuf\

?V(Q ’L-\ é L (A3

= L% Cryp) . (82)

Geometrically, - Q (r,p ) is the slope of the straight line which equals

0 at R=r1 and Esp( p,r) at R = kr, as is illustrated in Figure 8; clearly
this is precisely the construction of Figure 6, which was used to find the
tree code exponent. As there, the minimum magnitude of the slope comes
when p is such that the straight line is tangent to the sphere-packing ex-

ponent; for this o) earlier called Por We have

where ?(r) is as always the € for which r=Re - Choosing p-= W,

we have

prcc> 2 L” §8 | (84)

for any sequential decoding algorithm with complexity C as defined above.
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Figure 8. Construction of ?(r, » ).




The similarity of the quantitiés arising in this development to
those in our earlier development of the probability of error for tree
codes suggests a basic kinship between the two situations. We feel it
is of value to elucidate this kinship.

First, let us rework the result of Jacobs and Berlekamp. As it
stands, it has some peculiar features: For a fixed value of L, for ex-
ample, the bound on Pr(C » L) increases up to a certain critical length
No for which L = exp(l-;A.O)Nor, and then decreases subsequently, sug-
gesting that once the decoder gets over an initial lump in computation,
it is in the clear. This particular quirk can be fixed for N ?'No by
considering the block code consisting of the words which are identical
to the correct word up to branch (N-No)/b, in effect''starting" the tree
code sufficiently later so that its block code length is always the
critical length No’ and then we obtain Pr(C »>.L) 21°f (r) fox; all L
and all N2 No‘ This strongly suggests that the JB result is really a
""'per branch' rather than a "per block" result.

For an infinite constraint length code, define Sii' as the set of
all sequences of i' branches which first unmerge at branch i. It is not

hard to show that the size of this set is asymptotically equal to

.

lSii.( gttt (85)

the argument is similar to that leading to (43). The code words corre-
sponding to these sequences form a block code of effective length

N = (i'-i+1)b, since we may ignore the places before the i th branch, and
the rate of the block code, from (85), is therefore approximately the
tree code rate r. Now define Lii' as the number of elements of the set
Sii' which have greater likelihoods than the correct code word, and de-

fine p by
L = exp (1- p- INT. (86)

Then by the list decoding lower bound
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Pr(L;;, 7 L) > exp - NE ( poT)

(87)
L' '? (rs\b)

where we simply repeat the arguments of (80) - (82). The JB result then
follows from
Pr(C?> L) ‘LPr(Lii,> L), any i, 1i°
: (88)
L g ()
-1 €M,

\ve

But what we want to note is that the bound of (88) is tight at high rates.
For let us set up a particular code, namely a random tree code, and a

particular list-of-L decoding scheme, namely a Viterbi decoder of decoding

constraint length V , where L=qV ; the list generated by such a decoder

is to be considered as the q" survivors of the decoding step at branch i'.
Clearly the correct word is not on this list only if it is discarded within
the group of sequences which agree with it in the last V letters, and we

have determined that the probability of this event is

Pr( £) = exp - Vbe(r)
= exp - Vbr £ (r), r2 R1 5 (89)
-1~ © (r)’

which agrees with (88) for r 2 R1 = Rcomp' Thus we see that at high

rates not only is the bound of (88) tight, but that to asymptotic pre-

cision the event in which the computations exceed qv with an infinite

constraint length sequential decoder is precisely the event in which a

Viterbi decoder of decoding constraint length ¥ would make an error.
From this we shall in the next section draw a moral.
For completeness, we now extend the above argument to show that (87)

is tight as well, at high rates. Consider a modification of the above
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scheme, also using a Viterbi-like decoder of constraint length ¥ , where
again Léqv . The decoder cannot know which words belong to the set S,
or which is the correct word, but it can do the following. Within each
of the q’ subsets of sequences which agree with each other over the
consecutive letters ending with branch i, it can set up an ordered list
of the input sequences in order of likelihood. It can then submit these
to a judge, with instructions to construct a list of L by taking the top-
most member of each list which actually either belongs to Sii' or is the
correct word; the judge then determines whether this list of L=q' se-
quences is totally in sii' or contains the correct word. The probability
of the correct word not being on the judge's list is then the probability
that some member of the set Sii' which agrees with the correct word over
the last v consecutive letters is more probable than the correct word,

which we determined in (46) to be equal to

Pr.., (€ ) 2exp-vbe(r,p) (90)
where
p= 1- c_-%l > (91)
from (45), and
e(r,p) =1 @ (r,p ), (92)

from comparison of Figures 6 and 8. Thus (90) can be written

""

Pr.., (E£)

ii!

exp - VYbr f (v, ) (93)

R AT ‘“'),,

which agrees with (87). Thus we see by examination of this particular
scheme that for pr 2 RCrit the probability that the number Lii' of ele-
ments of Sii' which have greater likelihoods than the correct code word

exceeds L is asymptotically equal to the expression of (93).
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As in our discussion of the sequential Viterbi algorithm, we con-
jecture that these bounds could be shown to be tight at all rates by
considering a Viterbi-like decoder which within each group chose a small

list of words, rather than a single survivor.

Morals for Sequential Decoding

The standard sequential decoder design uses a code of constraint
length long enough that decoding errors are negligible; the probability
of decoding failure is then dominated by the probability that decoding
computation becomes excessive. We would suggest that, unless the ability
to detect decoding errors is highly prized, one might do better to re-
duce the constraint length to the point that decoding errors predominate.
Our reasoning follows.

First, let us use the results of the previous section to analyze
the tradeoff that could be made. A conventional sequential decoder, say
of the Fano type, is characterized by the maximum number of computations
L that can be made on one branch, or typically by the product of the buf-
fer size in branches times the nﬁmber of computations which can be made
in the time taken to transmit one branch. If this latter speed factor
is substantially greater than the average decoding load per branch, the

probability of decoding failure is approximately given by [Jordan (1966)]
pr(g)x1 § (M (94)

The results of the previous section suggest that if we shorten the en-
coding constraint length to approximately °V , where q‘? =L, this proba-
bility of error will be unaffected, but errors will now tend to be de-
coding errors rather than buffer overflows. (With a Viterbi-type sequen-
tial decoder this correspondence would be exact; with other sequential
decoders, only approximate.) Thus we have some freedom to make one or
the other type of error predominéte without grossly affecting the error
probability.

Now which type of error is more desirable? The buffer overflow type

has the great virtue that it is always detectable. It has the great




-Ad4-
?

disadvantage, however, that after overflow one must wait to become re-
synchronized to resume decoding; this may involve waiting for the biock
termination with terminated tree codes, or perhaps automatic resynchroni-
zation, as will be discussed later. In any case resynchronization re-
quires special procedures and involves a dropout of many bits, typically
many constraint lengths. With a decoding error, on the other hand, the
decoder simply blunders on normally, no special procedures are required,
and, as we have seen earlier, error runs are typically of the order of a
few constraint lengths or less. If minimizing output error probability
and decoder complexity are the principal criteria, decoding errors are
therefore to be preferred.

One disadvantage of the conventional sequential decoding algorithms
vis-a-vis the Viterbi-type is that buffer overflow cannot be eliminated.
With an ideal Viterbi-type sequential decoder we might have the compu-

tational distribution

Pr(C>L) =L $ (r), L <q4 ;

(95)
=0 , L Z qﬁ .
Such a distribution has a mean given approximately by
CT= ® ., em@<y
g (r)-1 (96)
~ 1In q, ?(r)=1 (r=R1=Rcomp);

q ~ [1‘ ? (1‘)], f (1‘) > 1.

If the average number of computations per branch were substantially

greater than this mean, then one could be fairly sure that, if the buffer
were large enough to permit somewhat more than q'V computations maximum
on any one branch, it would never overflow, so that one could indeed omit
internal resynchronization procedures in the decoder, relying perhaps on

manual intervention. However, the conventional sequential decoding
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algorithms, such as the Fano, not only have some variability on how many
microcomputations go into a 'computation,' or a path rejection, but also
differ fundamentally from the Viterbi algorithm in not ignoring paths
which have merged with some better path. We may say approximately that
such algorithms examine at any one branch all sequences in order of like-
lihood until arriving at either the correct sequence or some sequence
merging with the correct sequence, for either one will look good there-
after, while any other will tend to look bad. Arguing purely heuristi-
cally, then, we may estimate the distribution of computation for a sequen-
tial decoder with a finite-length code as follows. If the code had in-
finite constraint length, then the probability that L or more words would

have greater likelihood than the correct word would be
prczy =1 § (0 (97)

Let the constraint length actually be % ; we have seen that this does
not affect decoder operation until paths remerge. Of the L sequences
with greater likelihood than the correct word, each one independently
v

has probability q~ of terminating in the same ¥ letters as the cor-

rect sequence, so the probability that none are merging with the correct

word is

a-q b (98)
which expression is bounded and approximated by

G-qY gep-1a7 (99)

Thus for L <q") , this factor is nearly 1, while for L 2 q"' , it be-
gins to decrease exponentially with L. Taking C' as the number of words
with greater likelihood than the most likely sequence merging with the
correct word, we have

o 4

Pr(C'> L) = (1-q Y- (1) (100)
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as an approximate expression for the computational distribution to be
ted with the Fano algorithm and a finite constraint length. This
expression seems to differ fundamentally from (95) in not imposing a
strict ceiling to the number of computations possible. However, it does
become small rapidly for L:>cf9 , and in fact has approximately the
same means as (95), given in (96), which suggests that in practice the
probability of buffer overflow can indeed be made negligible without
great reduction of y and thus increase in Pr( E; ). This conjecture

remains to be experimentally verified.

Unterminated Tree Codes

Aside from dividing code sequences into blocks and thus giving the
decoder an easy way to start or restart, we have so far discovered no
advantage to terminating tree codes. Moreover, termination has the dis-
advantage of introducing a small rate loss from the tree code rate; this
may be more or less objectionable in itself, and also implies in equip-
ment a more or less inconvenient buffering and clocking problem. We are
therefore motivated to ask whether we could dispense with termination al-
together.

Before treating the resynchronization problem, we first deal with a
more trivial one. The Viterbi algorithm never actually makes a final
choice on any source letter, as we described it; without termination, its
q" surviving sequences would just get longer and longer. Clearly any
decoder is going to have to make a final choice sometime. Intuitively,
it is clear that, if one imposes a final decision on branch i only when
the decoder has gotten far enough beyond branch i, the probability of mak-
ing an otherwise unnecessary error at this point can be made negligible.
Rigorously, let us suppose that the decoder chooses the single most likely
sequence out to branch i and fixes on the first letter of that sequence
as its final choice for the first letter. Let us suppose further that no
decoding error on the first branth would be made by a maximum likelihood
decoder; that is, all sequences which unmerge at the first branch and
subsequently remerge have less likelihood than the correct sequence.

Then the probability of error is the probability that some sequence which
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differs from the correct sequence in its first letter and does not sub-
sequently remerge before branch i has greater likelihood than the se-
quence of greatest likelihood which agrees with the correct sequence in
the first letter; this probability is clearly less than the probability
that some one of the totally unmerged sequences is more likely than the
correct sequence itself. But there are approximately
. i

l511| =q (101)

such totally unmerged sequences, forming a random block code (with condi-

tion 2') of length N = ib and rate R = r, so that

Pr(§ ) = exp - NE(R)
(102)
= exp - ibE(r)
Let us then choose i so that
Y E@®

that is, to be the same multiple of a constraint length as the tree code

exponent is of the block code exponent at rate r; then (102) becomes
Pr( £ ) = exp - Vbe(r) (104)

and the error probability is not increased by imposing a final decision
at branch i. We comment that this shows that the advantage in perform-
ance of tree codes over block codes cannot be achieved without this sort
of suspended judgment, and that one may expect that tree code decoding
algorithms which make final decisions after a constraint length will have
no better performance than block codes of the same length.

As for resynchronization, we propose the following modification of

Viterbi's algorithm. Pick an initial branch at which to start. There
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. + st s .
will be q v 1 possibilities for the source letters corresponding to
that branch and the ¥ preceding. Among the q of these which have the

av
" same final v letters, choose that which has greatest likelihood on the
first branch alone; these choices for each of the qv possible termina-
tions give (f survivors. Continue normally with the Viterbi algorithm,
calculating likelihoods only from the initial branch onward. This pro-
posed resynchronizing Viterbi algorithm differs from the original only
in starting the computation of likelihoods at an arbitrary branch. In
terms of the trellis picture, this algorithm amounts to gluing all q“
starting nodes together as an initial node.

v survivors

We define the algorithm to be resynchronized when all q
have remerged with the correct path at some point. Suppose we assist the
resynchronization by taking the single most likely of the q" survivors
at branch i and discarding all survivors which do not merge with it some-
where between the initial branch and branch i. The probability that the
correct sequence is discarded during this maneuver is the probability
that after i branches some sequence which is nowhere merged with the cor-
rect sequence is the most probable, but as we have seen, this probability
is

Pr( £ ) = exp - ibE(r) (105)

Thus if i is large enough, the probability of not getting resynchronized
by branch i can be made as small as one likes. Of course this maneuver
would not be necessary in practice; totally unmerged sequences would be
carried along as excess baggage until they either merged or became to-
tally improbable and were discarded.

Note that resynchronization is therefore achievable without any ad-
ditional decoder complexity over the qY normally required. It is true
that if the decoder computational load is not fixed at qq , as with the
Viterbi algorithm, but variable,‘as with the sequential Viterbi algorithm
or the Fano sequential decoding algorithm, the computation will tend to
v

start off at its maximum value of q and then decrease to its normal

statistical behavior as resynchronization is achieved. However, if the
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maximum computational load L and the constraint length ¥ have been chosen
so that L is somewhat greater than q" , as recommended in the previous
section, then there seems no reason why the decoder should not get over
this initial transient and resume normal decoding.

We conclude that an unterminated tree code can be decoded without
any loss in performance by a decoder which makes final decisions some
fixed number of constraint lengths after it first gets to a branch, and
which resynchronizes by simply starting decoding, counting likelihoods
from an arbitrary initial branch, as long as the maximum absorbable de-
coding load is somewhat greater than qq , S0 that decoding errors pre-

dominate over buffer overflows.

Summary and Conclusions

Let us briefly review our more important results. We have deter-
mined the exact exponential behavior of the probability of error of ran-
dom tree codes with maximum likelihood decoding at all rates. We have
showed that, when considered as block codes, terminated random tree codes
can be made to give precisely the same performance as random block codes
at all rates, this performance being the optimum performance at high
rates; then we have exhibited a tree code decoding algorithm less complei
than the equivalent block code maximum likelihood algorithm, namely the
Viterbi algorithm, thereby showing just wherein the superiority of tree
codes over block codes lies. We have observed that performance superior
to that of block codes can be obtained if the tree code is not terminated,
and have demonstrated that the Viterbi algorithm can be successfully modi-
fied to obtain resynchronization and to use only finite memory when the
tree code is unterminated.

By showing'that buffer overflow and decoding error are asymptotically

v

identical events when the maximum computational load L %= q and the

rate is at least Rcomp’ we have elucidated the basic interrelationship

between these two events, and drawn the moral that in sequential decoders
L and ¥ ought to be chosen so that this equation approximately holds.
We have estimated the computational distribution with finite constraint

v

length codes and concluded that computational loads much greater than q
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become very unlikely, so that buffer overflow may be made rare. The se-
quential decoding system suggested by these results would therefore be

one of only moderate constraint length, with undetected errors predominat-
ing over overflows, and with no termination, the rare overflow and initial
startup being handled by an automatic resynchronizer in which the decoder
would just simply start decoding under each possible assumption about pre-
vious information bits.

The most obvious gap in these arguments is the failure to establish
results for Viterbi-like algorithms for rates below Rcomp identical to
those known to hold for sequential decoding, in particular to show that
the computational distribution can be made to be L~ f'(r) for all rates.
As we have conjectured earlier, the path to this result probably consists
of setting up a list-of-L Viterbi algorithm, and obtaining expressions
for the probability of tree code list decoding error which would relate
to the block code list results by the construction of Figure 3, but we
have been stymied by the necessity of accounting for the possibility of
the L incorrect sequences merging among themselves. This certainly ap-

pears to be one of the most interesting open questions.

REFERENCES

Gallager, R. G., "A Simple Derivation of the Coding Theorem and Some Ap-
plications,'" IEEE Trans. Info. Thy., IT-11, 3-18 (1965).

Jacobs, I. M., and E. R. Berlekamp, "A Lower Bound to the Distribution
of Computation for Sequential Decoding,' IEEE Trans. Info. Thy.,
IT-13, 167-174 (1967).

Jordan, K. L., Jr., "The Performance of Sequential Decoding in Conjunc-
tion with Efficient Modulation,'" IEEE Trans. Comm. Tech., COM-14,
283-297 (1966).

Shannon, C. E., R. G. Gallager,.and E. R. Berlekamp, '"Lower Bounds to
Error Probability for Coding on Discrete Memoryless Channels," Info.
Control, 10, 65-103 (1967).



-AS51-

Viterbi, A. J., “Error Bounds for Convolutional Codes and an Asymptoti-

g Algorithm," IEEE Trans. Info. Thy., IT-13,

[ST~ -

260-269 (1967).

Wozencraft, J. M., and I. M. Jacobs, Principles of Communication qui;

neering, John Wil & Sons, New York, 1965; Chapter 6.
heering ey P



APPENDIX B. HORSEBACK ANALYSIS OF CONCATENATION SCHEMES

In this appendix we develop a point of view about concatenated
sequential decoding schemes, and use it in the invention and rough analy-
sis of a number of such schemes. We are guided by the considerations of

Appendix A.

Development of a Point of View

In Appendix A we saw that with a tree code of large constraint
length the essential limitation of sequential decoding schemes is the
statistical behavior of the decoding computational load. In fact, the
number of decoding computations per branch C follows the Pareto distri-

bution:

C ==
7
(1
where K is some constant, (experimentally, of the order of magnitude of
1}, and et (r) is the Pareto exponent, which depends explicitly on the
tree code rate r and implicitly on the channel statistics through
Gallager's function Eo(? ). We showed in Appendix A that for r 2 Ry=Rcomp,

o¢ (r) is the solution to

E )
c= = =Ry

(2)

this relation apparently holds at all rates for sequential decoding. A
variable with a Pareto distribution in which the exponent oL is less than
1 has an unbounded mean; a finite constraint length does bound the mean, as
we saw in Appendix A, but it is still true that for @1 the mean is rela-
tively small while for o<1 it becomes very large. In fact, the rate r at
which & =1, namely Rcomp=R1=Eo (1), seems to represent an upper limit to
the practically usable rate of a sequential decoding scheme. This rate is
always less than capacity and sometimes significantly so. For example, on

a white gaussian channel, in the limit of arbitrarily great bandwidth and
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arbitrarily fine receiver quantization, the channel is characterized

by the E,( ¢ ) function for a very noisy channel:
ot ¢

E.(Q) = ;—%—;{ C
(3)
where C is the rate that would achieve a signal-to-noise ratio per
information bit Eb/No of Qw 2=.69=-1.6db, the Shannon limit for a
white gaussian channel. Substituting ?==1, we find that the sequential
decoding limit is E,(1)=C/2; thus sequential decoding seems to be
practically bounded 3 db away from channel capacity.

If we wish to get close to capacity, and in deep space
telemetry we want every decibel we can get, we must find a way of
taming the computational distribution so that it does not blow up
at rates near capacity. Let us therefore recall the cause of the
Pareto behavior of the decoding computation. We saw in Appendix A
that a decoding load of cf was to be expected whenever a decoder of
decoding constraint length V¥ would have made an error; further,
that with constraint length vV most error events involved unmerged

sequences of length'v/}k. (in branches), where

_ o €20
Mo \ Eole)

2
. )
o being the solution to (2), and that such error events had probability

RAE) = exp -Veels)
exyP -V‘an(&\.

©

(5)

Thus, as had been pointed out by earlier authors, we conclude that
1. The statistics are predominantly due to the channel
maintaining.a certain critical noisiness for a time 1°;
2.  The probability of a channel burst of the critical
noisiness and length 4 goes down exponentially with 4,
while the resulting computational load goes up exponentially
with 7, the ratio of these exponents being the Pareto

exponent.
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Suppose we then have a sequential decoder whose speed advantage
is significantly greater than the average computational load, and whose
maximum computational capacity (speed advantage times buffer size) is L.
The above conclusions lead us to believe that all computational failures
are due to a simple type of channel misbehavior, namely the channel
maintaining the critical noisiness for the critical length of time
required to cause just greater than L computations. Other types of
channel noise are disregarded for the following reasons:

1. Noise bursts of the critical density but shorter than the
critical length cause fewer than L computations; the decoder
buffer will fill partially, but since the speed advantage is
greater than the mean load, any such transients will most
likely be dissipated by the time the next burst arrives.

2. Noise bursts of the critical density but longer than the
critical length are very rare, since the probability of
such a noise burst goes down exponentially with length.

3. Noise bursts of other than the critical density which lead
to fewer than L computations can be disregarded for the
reasons in 1.

4. Noise bursts of other than the critical density which lead
to L or more computations are rare, because they are
governed by an exponential distribution with a greater
exponent [ € (v )] than the exponent 2(vr,s) which applies
to the critical density.

There results a simplistic picture which is useful for visualiz-
ing channel behavior. Representing a rate - 1/2 code as two parallel

streams, for example, we have the picture below:

———— L1 s ——

____._m XX,

The cross-hatched sections represent noise bursts of just the right
critical length and density to cause a computational failure; all such

events will be identical, and no other events need be considered.
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Example of Horseback Analysis

To show how the above point of view is useful in estimating
the performance of concatenation-type schemes, we apply it to the first
scheme of this class to be proposed and examined closely, the 'hybrid!'
scheme of Falconer [1967].

Let the incoming information stream be separated into N-1
parallel streams, and create an Nth parallel stream by forming the
mod 2 sum (parity check) of all information streams. Encode these N
streams separately, for example in rate-1/2 systematic codes. Decode
all these streams separately in parallel; however, when N-1 of the bits
entering into any one parity check have been decoded (with acceptably
high reliability), cease decoding the Nth laggard stream, and simply
calculate its value from the N-1 known bits.

With this scheme a computational failure will occur only if
it would have occurred in two of the independent parallel streams
simultaneously. Thus to a failure belongs the following picture of
the noise (with N = 5):

ANAAAN

Of course there are (g) different ways in which such a noise burst

can occur on 2 of the N streams. Nonetheless, we see that for a
computational failure to occur, noise bursts of the critical density

but involving twice the number of bits are required. But the probability
of such a burst goes down expoﬁéntially with the number of bits involved,
and is therefore equal to the square of the original probability of
decoding failure. Thus if the original probability was proportional to

L*® the new probability will be proportional to
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(L2 = L% (6)

The effect is therefore to multiply the Pareto exponent by a factor
of 2.
This result could also have been obtained by simply noting

that the two overflow events are independent, and therefore

w®? 2 pr vertlow) £ ) ™’ 7
where the lower bound comes from looking at two particular streams,
and the upper, from the union bound. The previous analysis has the
advantage, however, of being usable in cases where several parallel

decoding processes are not independent, as will be the case below.

Falconer-Type Schemes

We now introduce a variety of concatenation schemes that have
occurred to us, and use the point of view developed above to predict
their performances as best we can.

First, the independent channel type of scheme used as an
example above is obviously extendable to more elaborate precoding than
a simple parity check. Let there be K information streams; from them
form N-K parity check streams by use of an (N, K) block code which has
minimum distance D.Encode and decode each of the N resulting streams
separately, using the block code to pick up any D-1 laggard streams.
The resulting probability of decoding failure is proportional to L_Dot;
thus arbitrarily large exponents can be obtained. The overall rate
is equal to rK/N, which for fixed D can be made as close as desired to
the original rate r by increasing N. This is the general class of
schemes considered by Falconer [1967]; we earlier [1966] made estimates
of the parameters of such schemes suitable for the white gaussian
channel, and determined the performance to be expected.

Implementation of this class of schemes is somewhat messier
than might be desired. In order to minimize the rate loss required to
obtain a certain D, one would use a non-binary Reed-Solomon code, where
K equals N-D+1, the maximum value possible. Although encoding and
erasure correction with such a code are straightforward, they are opera-

tions of a character quite different from sequential decoding, involving
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finite field manipulations. In particular, erasure-correction requires
an algorithm involving a sequence of finite field multiplications (pro-
portional to N or to Dz, whichever is larger) and a finite field division.
Although finite field operations are particularly well suited to digital
hardware, the need to introduce such a totally different decoding pro-
cedure may be expected to increase decoding complexity rather signifi-
cantly. An alternative is to use an easily decoded binary code; binary
codes are less efficient, however, and will therefore result in a

larger rate loss or larger N.

Variations of the Independent Subchannel Scheme

Next, we propose variations on the above class of schemes.
It will be helpful here and in the sequel to introduce the delay
operator notation for data streams; a series of bits io, 61 ) d;,
¢y, ... is represented by the polynomial

IM) = 1y 4+ 44D + 1, O + (D> + .- (8)
in the delay operator D. If we have N-1 information streams, for
example, we can denote them I; (D), I, (D), ..., I _1 (D). An overall

parity check on these streams is simply

sM) = g 1 (), 9)
where the sum is modulo 2. A convolutional encoder with input I(D)
and shift register taps represented by G(D) produces a parity check
P(D) = I(D)G(D), where again all operations are modulo 2; for example,

the encoder

=1 (D)

o
Q%_} P(D)

has the generator polynomial G(D) = 1+D+D3, and P(D) is related to
1(D) by '

P(D) = (1+D+D>)I(D). (10)
In the scheme treated in the example, the N-1 information streams
IK, (D) and the sum stream S(D) were each encoded with a rate-1/2
systematic convolutional encoder, so that 2N streams in all were

transmitted. If we suppose that all generators are the same, say G(D),




then the parity streams generated are

P, (D = GM)I

P (D) = G{D)S(D).

(11)

Correspondingly, let the received streams be denoted by I, '(0),

S'(D), P; '(D), and Ps'(D), and the error sequences by

Ezv (@) =1I; '(D) + 1 (D)
E;(D) = S'(D) + S(D)
Epi(D) =P '(D) + P;(D)

Pg' (D) + P (D).

Eps (D)

(12)

Continuing with this same example, consider the time when all

but two of the parallel pairs have been decoded up to some point, say

I,'() - B' (D) and 12'(D) - P2'(D). [Any two would do as well,

including S' (D) - PS'(D)]. Presumably we know the correct values of

S(D) and I;(D), ¢ #1, 2, and hence also

(D) +g; 1:(D) = I1(0) + I,(D).

Let us then form the two streams

Izn (D)

pzn (D)

1}

Ip'(D) + I3(D) + I2(D)

P,' (D) + [I;(D) + I,(D)]IG(D).

By simple substitution

I;'(D) = 1;(D) + Eg3(D)
P'(®) = I;(DIG(D) + Ey; (D)
IZ"(D) = Il(D) + EIZ(D)
P,"(0) = 1;(D) G(D) + Epy(D).

(13)

(14)

(15)

These four streams may therefore be decoded together as a rate-~1/4

code for Il(D); IZ(D) can of coﬁrse then be determined from the parity

check.

What sort of exponent does this variation have, in comparison

to the 2o¢ which the original scheme would give?

There are now two
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types of computational failures. The first occurs when there would have

been a computational failure in three or more streams independently:

and thus has an exponent 3g . The second occurs when two streams

have a noise burst so bad that it defeats a rate-1/4 code:

which event will have the exponent o#(1/4) appropriate to a rate-1/4
code. Thus the question is whether p¢(1/4) exceeds 2 o (1/2). Now
oK (R) is the solution to

o< (R) (16)
thus
X (1/4) = 4E;[o¢(1/4)] = 4E [ec(1/2)] = 2e«(1/2), (17)

where we use the fact that E ( e ) is a non-decreasing function of Q -

Thus, we always improve the exponent with this particular stratagem.

No additional rate loss is involved; there is however, a need for a

separate rate-1/4 decoder, involving additional decoding complexity.
One could further consider intervening in this way when N

streams remained undecoded, N .2. The resulting exponent would then be
min § (N+1) o< (1/2), o([1/2(1-1/N)]3 for a rate-1/2 code, or
min {(N+1) » (R), ot[R(l-l/N)]g (18)

in general for a code of rate R. Since the former quantity increases
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with N while the latter decreases, increasing N pays as long as

ot [R(1-1/N)] > Nx(R), (19)

By JXRA-INTY  MEo k)],
R(1-1/N) R

Eo§ ¢ RU-I/ME > (-DE(®)]. (20)

This will always hold for N=2, as above, but higher values of N are
justified only at the rates closest to capacity.

Finally, the same stratagem can be used when there is more
than one redundant stream; the analysis is similar.

A final variation would be to precode with a convolutional
code of rate K/N capable of correcting D-1 erasure bursts, rather than
with a block code. This would also give an exponent of Da¢, and might
very well have some implementational advantages. Whether or not it
does so depends on the properties of such codes, which we have not had

time to examine.

Mixed Subchannel Schemes

By not transmitting the redundant information stream, we
can cut the rate loss at the cost of a lesser exponent. An example
of such a scheme is the following. Let the information streams be
I:(D), 1eveN-1. Let

Py(D) = I;(D)G(D)

P2(D) = [I;(D) + I,(D)]G(D)

Pi(D) = [I{_1(D) + I;(D)IG(D), 2¢ ¢ N-1

PN(D) = Iy.1(D)G(D), (21)

where G(D) is some generator polynomial of a rate-1/2 systematic
convolutional code. The overall rate is now (N-1)/(2N-1), which is
closer to 1/2 than the independent subchannel scheme above for the

same N. The decoding procedure for such a scheme would be to start by
simultaneously decoding I;'(D) - P;'(D) and IN_1'(D) - PN'(D) as rate-1/2
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codes; when Ij(D) is decoded, then form

pzn (D)

P, (D) + I;(D)G(D)

I(D)G(D) + Epz (D) (22)

and decode I,(D)-P,'" (D), and similarly work up from the bottom; stop

when all I (D) have been decoded from one direction or the other.

A typical failure pattern might then be (for N=4):

Py - % 1
I )
P, S g 2
2 —sxee——— Yy

. Pz N ; S
I ) .
P, )

We see that if one received parity stream is particularly noisy it
can be ignored. This scheme will be frustrated if both the parity
streams associated with an information stream and the information
stream itself have the critical length and density, as illustrated
above; the bits involved are 3/2 the number ordinarily involved, so
we would expect an exponent of (3/2)e¢ for this scheme.

This scheme can be improved in the same way as was done
above, by invoking a rate-1/3 decoder when only one information stream
and two parity streams remain to be decoded, or in general a rate
N/ (2N+1) decoder when only 2N+l streams remain. As above, the rate-1/3
decoder will always improve the exponent, but earlier interventions
are justified only at rates near capacity.

These ideas can be extended to give greater exponents in
an interesting but probably unprofitable way. A few examples will show
the general principle. Considqr the regular geometrical constructions
below:
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Y

In these figures the symbol o represents an information stream, and

k

X represents a parity stream. The parity streams are formed by taking
the mod 2 sum of the information streams connected to the parity stream
by the lines of the figures and encoding the sum with a convolutional

encoder whose generator polynomial is G(D):
P(D) = [=1; (DIGD). (23)

Decoding is begun at the corners in the upper figures and at the bor-
ders in the lower figures, and continues by the 'subtracting out' of
already decoded streams, as above. Each one of the information streams
can be approached from d different directions, where JL=3 on the left
and &,=4 on the right; it is fairly easy to convince oneself that no
computational failuré can occur unless there are noise bursts of the
critical length and density in at least'd.parity streams and one infor-
mation stream, so that the expected exponent would be [(d+1)/2]ec.
However, the excess of the number of parity streams over information
streams, rather than being constant, goes up as the square root of the
number of information streams. ‘Therefore, while the overall rate will
approach 1/2 with increasing numbers of streams, it does so relatively
slowly, so that one would expect relatively large patterns, implying

decoding complexity.
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These same patterns can be used in an independent subchannel
type of scheme by generating more than one parity stream for each x
and not transmitting the information stream. In this case the result-
ing exponent will be (d+1)x; it is apparent that this is just a geo-
metric way of constructing a code of minimum distance D=d+1, and not a
very efficient code at that, although with it erasure-correction is

very simple.

Reverse Decoding

Ordinarily convolutional codes are periodically resynchronized
by the insertion of a constraint length of fixed dummy bits in the
information stream. Convolutional codes may also be automatically
resynchronized, as we saw in Appendix A. With either of these methods,
the possibility exists of starting at a point at which the decoder is
resynchronized and decoding backwards. With a systematic code, such
reverse decoding can be expected to have some of the effects of
concatenation, but without any rate loss in comparison to the conventional
system.

Consider a rate-1/2 systematic code of constraint length V ;
that is, the encoding polynomial G(D) has degree ¥ . Writing out the

encoding equation, we have the convolution

)
=2 a .
k . - 2
where C}o and %\, are always equal to 1. Normally, a sequential
decoder hypothesizes the information bits in order of increasing
subscript; each new hypothesis then depends on examination of the received
bits

T .
k=t + ey

1 \ > .

L= Ly ( Za. (. ) 4 :
P AR et %y (25)
if the quantity in parentheses is assumed known, then we have two
separate estimates of Ck, which permit a reasonable hypothesis. On
the other hand, when decoding in the reverse direction, the information

bits are hypothesized in order of decreasing subscript, so that the
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hypothesis of i must be based on the received bits

P by (U2 4.4 ) v e
§=° ﬁd kqvwk Al p,k+v b] (26)

Where again the quantity in parentheses may be assumed known at the
time of hypothesizing fk . We observe that the parity bit associated
with ik is skewed by ¥ bits in the reverse decoding; if v is large
enough, this suggests that the forward and backward parity streams
associated with the information stream may be almost independent.
Suppose then we adopt the strategy of decoding from both ends simul-
taneously. In the terms of our horseback analysis, the patterns re-

quired for computational failure would be

3.
NNANN

or

RAXXX AXXXX

AEALAEALAL.

which would lead to an estimate of (3/2)X for the Pareto exponent, for
small values of the computational variable L. For larger values of L,
the critical length will begin to exceed the constraint length ¥ s

as we saw in Appendix A; then the failure pattern will be

NN
XXX

XXX

and the exponent should begin to decrease toward X . Finally, for L>6)v,
the computational distribution will begin to fall off very rapidly, as
it does in the ordinary case. Thus the general shape of the curve of
,Qoa‘ Pe(C>L) versus .Q,caa L. would be expected to be



ﬂc 3 pv(C’L)

J
’Q“ﬂ L I ‘\’
The hope would be that the constraint length would be sufficiently long
that the range of L in which o¢ is multiplied by 3/2 would be the range
of practical interest.

One virtue of reverse decoding is that it may be applied in
combination with any of the other concatenation techniques without much
additional complexity or any additional rate loss, to give an effective
multiplication of the exponent otherwise attainable by 1.5. Thus
although the expected gain is not remarkable, it comes almost for free,
and can be obtained in addition to whatever can be obtained otherwise;
for example, it would seem almost certainly preferable to get an expo-
nent of 3« by using one of the earlier schemes to get 2« and using
reverse decoding than by relying on one of the earlier schemes by
itself.

We have been able to extend the reverse decoding idea with
a geometrical approach like that described earlier, which is again
interesting though not necessarily useful. Imagine an encoder which
first lays out the information bits in a n-dimensional regular array,

such as the 2-dimensional rectangular array below.

0 0O0O0O0 . 00 0O0O . 0
0O 0O0O0O . 0O000CO0O0O . o
00000 . 00 00O . 0
. 000,00 . 00 0O0O. (o]
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Here the open circles are information bits, and the dots fixed dummy
bits; the latter form borders around blocks of information bits. Now
let there be one parity bit for each information or dummy bit in

this infinite array, and let each parity bit be the mod 2 sum of a
fixed pattern of bits in the corresponding square three bits on a
side. For example, if we label the information bits ijk, then we

might have

Pjk = ijk * ij k+2 * 1541, kel * 142,k * 1j42,k+25 (27)

making sure that all the corners of the square are represented. Then
it is possible to begin decoding any block at any corner, and any bit
may be reached in decoding from any of 4 different directions. In each
direction a different parity bit is associated with the hypothesis of
a particular information bit. Although it is not obvious how best to
construct a sequential decoder for such a code, other than setting an
ordinary decoder to run along rows and columns, we might hope for an
exponent of (5/2)& .

This scheme can clearly be extended to higher dimensions and
other types of regular arrays. Its major theoretical drawback is the
large ratio of border bits to information bits, particularly in the

higher dimensions, with a consequently high rate loss.

Cross-Coupled Coding

Finally, we mention a provocative idea which seems to promise
some of the virtues of concatenation with no rate loss whatsoever, by
using a code which is decodable by two different convolutional decoders.
Consider the rate-2/4 code made up of two parallel rate-1/2 codes which

is illustrated below:

] j »11(D)
; P/ Py D)

//AV \\\kl > P (D)
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The first parity stream is the sum of a set of recently transmitted bits
from the first information stream, and a set of bits transmitted some
time previously in the second information stream; the second parity

stream, vice versa. Thus the encoding equations might be

P; (D)

P2 (D)

G(D)I; (D) + G(D)I, (D)D"

G(D)I;(D)DM + G(D)I,(D). (28)

Decoding would begin with two independent rate-1/2 sequential
decoders working on the pairs I;'(D)-P;'(D) and I,'(D)-P2'(D). As long
as the two decoders advanced at roughly the same rate, the effects of
I(D) in P3(D) or of I;(D) in P2(D) could be subtracted out. However,
if one decoder ran inte a difficult search, the other, say the first,
would eventually get n bits ahead. Then the strategy would be to switch

to a rate-2/4 decoder decoding the four streams

Iy'(D
Py'(D)
P,' (D)DN
I,'(D)DN

I;(D) + Eg;(D)

1, (D)G(D) + G(D)I,(D)Dn +Ep1(D)

(G(D)I; (D)D2R) + G(D)I,(D)D™ + Epp(D)DM

IZ(D)Dn + EIZ(D)Dn (29)

for the two information streams I;(D) and IZ(D)Dn. [The I;(D) informa-
tion bits 2n bits earlier, in parentheses, would be assumed known.] As
soon as I,(D) was over the hump, the decoder would return to the.former
strategy.

Estimating the performance of this strategy is a bit tricky.
Computational failures with a rate-2/4 code will be caused by noise
bursts of the same density but half the length (though the same length
in total bits) as with a rate-1/2 code. That is, the two failures
look 1like

and

Y5 YAY]
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Therefore the cross-coupled code will certainly be defeated by a noise

burst of the following form:

- R
|

—~X—

XXX

—————e ERRNK

hh'h A h A

Thus the most we can get is an exponent of 3/2&. However, we may not
even get this much. First, the cross-coupled code is a particularly
lousy rate-2/4 code, and although the computational behavior of a
sequential decoder seems almost totally insensitive to quality, some

- degradation in the exponent might occur. Second, given a critical
noise burst in 12'(D)-P2'(D), there might be some noise burst in the
other pair more likely than that illustrated above which would lead

to computational failure.

An alternate application of these ideas, which is somewhat more

elegant, but which depends on the ability of a sequential decoder to
resynchronize, would involve a simple rate-1/2 code with the following

encoder:

1(D)

I

In other words,

P(D) = I(D)G;(D) + I(D)G, (D)D", (30)
where n is large enough that an ordinary sequential decoder can cer-
tainly resynchronize itself in n bits. For instance, a fixed sequence

might be inserted every n bits." Ordinarily, the decoder would be
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assumed to know the information bits from n time units previous, and
would decode I'(D) - P'(D) using only the front end of the shift regis-
ter; thus as long as no failures occurred the behavior would be precisely
that of an ordinary rate-1/2 sequential decoder with the code generated
by Gl(D). In the event of computational failure, the decoder would

skip ahead and obtain resynchronization, presumably before the undecoded
bits reached the right end of the shift register. When they did so, the

decoder would consider the four following streams simultaneously:

1' (D) I1(D) +Ey(D)

P'(D) = I(D)Gy(D) + I(D)G, (D)D"

I'(D)DM = I(D)DM +Ej(D)DM

P' (D)D" = I(D)G, (D)D" + [I(D)G,(D)D2M] + E, (D)D"

where the quantity in brackets would be assumed known and subtracted
out. These four streams are then the equivalent of a rate-2/4 code ih
the two information streams I(D) and I(D)D“, and can be decoded as such.
As soon as the undecoded section of I(D)D" is decoded, ordinary rate-1/2
decoding would be resumed. The analysis of computational failures is
exactly as above; in particular, the pattern
e -
———— R3O

—6%3% RN

must lead to failure, and there may be worse, so the improvement is no
better than 3/2«.

Extensions of this approach come to mind immediately; clearly
one could add more and more clumps of generators. How to choose the
spacing of the generators and the rules for changing modes then becomes
quite a complex problem.

In conclusion, the improvement in exponent with these strategies
is no more than 3/2, and may not even be that much. However, the ideas
involved here are very interesting, in that they show that no rate loss
is necessary in principle to reélize an improvement in computational
behavior; the essential principlé seems to be to set up the code so that
the decoder can operate in any of a number of alternate modes, thus

forcing the noise to gang up on you in several places simultaneously.
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Conclusions

In this appendix we have developed a point of view about what

causes computational failures in sequential decoding schemes, and we

avroe 1
ArG VvV w

oint of view to estimate the performance of a grab bag
of different schemes. Most of these schemes, with the exception of
reverse decoding and cross-coupled coding, involve some rate loss, and
all involve increased decoding complexity; however, all also result in
an impfovement in Pareto exponent which more than compensates for the
rate loss, since in every scheme the rate loss may be made to approach
zero without changing the improved Pareto exponent; None of these
schemes clearly emerges as the most desirable, however; we simply now
have a lot of methods to try.

One has the feeling that the ultimate scheme remains to be
invented. The central notion uniting all the schemes discussed is the
provision of alternate methods of decoding any particular information
bit or stream, so that the noise is forced to be bad in several places
at once. The way this is done in all these schemes seems more or less
brute force and inelegant; one imagines there must be some way the same
effect could be achieved easily and naturally. The existence of such
a scheme is certainly the most important question left open by this

appendix.
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APPENDIX C

SIMULATIONS

In this appendix, we describe simulations whose purpose was
to assess the validity of the analysis methods of Appendix B by com-
paring actual performance with predictions for a few simple schemes.
We shall first describe the schemes we chose to simulate and the features
of the simulation programs, and then exhibit and discuss the results

obtained.

Basic Codiggischeme

All the schemes described in Appendix B start with an ordinary
convolutional code and a sequential decoder which when used on a memory-
less channel has a Pareto computational distribution with exponent e¢
To minimize programming effort and maximize simulation speed, we chose
the simplest possible such scheme, a rate-1/2 systematic code used on
a binary symmetric channel with variable crossover (error) probability
p. The Pareto exponent of of such a scheme is given as the solution to

VB

e

- )
2 24 )
where Gallager's function Eo(g) is given in bits by
—_ _ \ |\ it
b°(€) = —Loza,‘_g_ S L\Om + (\*PS‘_‘?—J @
2

for a binary symmetric channel. The solution to (1) is depicted graph-

ically in Figure 1.

Though this basic coding scheme is a simple one, we expect
that our results are generally valid, since our analyses in Appendix B
led us to believe that the overall Pareto exponent with a concatenation
scheme would be some simple multiple of the Pareto exponent of the basic
scheme, so that the Pareto exponent is the only important parameter of

the basic code. ,

We are more particularly concerned with the db improvements

that can be obtained on the white gaussian channel. We would expect to
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use a scheme which gave an effective exponent multiplier of M by
starting with a basic scheme of exponent 1/M, and getting an over-all
exponent of 1; the resulting signal-to-noise ratio per information bit
(Eb/No) would be that of the basic scheme times the inverse of the
scheme's rate loss. Figure 2 gives » as a function of the basic Eb/No
for a rate-1/2 code with hard decision demodulation on a white

gaussian channel. We see that the Eb/NO at which ®=2/3, 1/2, 1/3, and
1/4 are .8 db, 1.2 db, 1.6 db, and 2.0 db respectively below the Eb/No at
which ot =1, which measures the potential gain with schemes of multiplier
3/2 through 4. Of course, normally one would want to use neither rate
1/2 nor hard decision demodulation. However, we believe that these
figures will be accurate to within tenths of a db for any PSK scheme.

As support for this contention, we sketch in Figure 3 the same curve for
the class of schemes in which the rate is very small and receiver quanti-
zation very fine, where the results for the very noise channel apply; for
this class, which is at the opposite end of the spectrum from the rate-1/2

hard decision scheme, the figures above are accurate to within .1 db.

The basic code used was one of constraint length 33 ( ¥ =32 in
the terminology of Appendix A), with the taps of the parity generator
given in octal notation by 71547370131. The constraint length was chosen
as a natural and convenient length to use with a 16-bit general-purpose
computer; the code itself was chosen, from amdng several of the same
length known to be fairly good, as that having the lowest undetected error
probability in some short preliminary runs. No consideration was given
to its performance when used backwards. Shortened versions of the same
code were used to check out hypotheses concerning constraint lengths;
these were the length 24 code 7514737 and the (symmetric) length 15
code 71547. Information sequences were arranged into frames of length
N up to 512, with the last bits set to a fixed all-zero sequence to

simulate resynchronization.

The decoder was a variant of the Gallager version of the Fano
algorithm adapted specifically to a rate-1/2 binary output code. The

metric increments used were in the ratio of +1 for a bit hypothesis in
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agreement with what was received and -9 for a disagreement, or on a per
branch basis (with two bits per branch) +2, -8, and -18; this is approii-
mately optimum near p=.045, where on is near one. The threshold spacing
was 4, in the same scaling. The ordering of the examination of branches
was such that the branch on which the hypothesized bit was equal to the
received information bit was always examined first, except that only
information bits equal to zero were permitted in the last constraint
length. Decoding computations were defined as either forward or back-
ward moves, the former being any memory reference to a branch after

the current branch, and the latter the opposite, the definition of
current branch changing with each move. Since it follows that, in de-
coding a frame, forward moves always exceed backwards moves by exactly

a frame length, only backwards moves were counted; further, these moves
were counted only in units of a computational quantum Q.

Whenever the total number of computational quanta exceeded 216, an

overflow was declared, and decoding on that frame terminated. 1In
all frames in which there was no overflow, the decoded frame was checked
for decoding errors, and the total number of information bit errors

printed out.

Since the decoding algorithm used a symmetric data-dependent
branch ordering, we could assume that the all-zero information sequence
was always transmitted without bias to the results. Channel errors were
simulated by a random number generator constructedas follows. A primi-
tive polynomial of degree 32, 41760427607 in octal notation, was used as
the generator polynomial of a simulated maximum length shift register
generating a sequence of period 232-1. Successive 8-bit segments of this
maximum length sequence were assumed to be independent random integers
evenly distributed between 0 and 255. By comparing these integers to a
fixed integer, error probabilities ranging from 0 to 255/256 in Steps
of 1/256 could be obtained.

Schemes Simulated

Three basic schemes were simulated: forward, forward-backward,

and side-by-side.
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ward scheme was simply ordinary sequential decoding

of the rate - 1/2 systematic code resynchronized every N information bits.
This simulation had the purpose of establishing the basic computational
distribution and probability of error as a function of code constraint

length and channel probability of error.

The forward-backward scheme was a simulation of the simultaneous
decoding of a single resynchronized frame from both ends, the reverse
decoding of Appendix B. The decoder was time-shared between the two
directions of decoding, switching from one to another after each com-
putational quantum of Q backward moves. Decoding terminated whenever
the complete frame was decoded in either direction; the computational
variable measured was the total number of computational quanta used

in the forward direction, or half the total number of quanta.

The side-by-side scheme was a simulation of the simplest
mixed subchannel scheme of Appendix B with N=1; in other words, two
independent parity streams were generated from a single information
stream and all three streams were transmitted. The decoder was time-
shared between the decoding of the received information stream and the
first received parity stream as one rate-1/2 code, and the received
information stream and the second parity stream as another. Again,
a switch was made after each computational quantum Q on one pair, and
the computational variable measured was the total computational quanta for

one of the decodings to terminate, or half the total computational quanta.

Results and Discussion

Figures 4-6 show the computational distribution obtained for
each of the three schemes at error probabilitiesof 9/256, 12/256, 15/256,
and 18/256. In all these runs, the frame length was taken to be 128 bits,
the code used was the one of constraint length 33, the computational
quantum was 4, and the total number of frameswas 21328192, Thus each
run involved about a million (220) bits; running times on a DDP-116
ranged from 5 to 40 minutes pef run. The graphs are log-log; each point
represents the total number of frames out of 8192 that the number of

computational quanta exceeded 2*, n< 16,
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Since the graphs are log-log, a Pareto distribution would
appear as a straight line. Indeed, one can fit a straight line quite
accurately to these curves in the upper ranges, and thereby obtain an
estimate of the observed Pareto exponent. We believe that such esti-
mates can be made to an accuracy of about *.05.

Lo

theoretically predicted Pareto exponent . , and for the other two

The observed exponents
appear in Table I. We also include for the forward scheme the
schemes, the values of 3/2 ¢, and }{_xe, which are suggested by the
analyses of Appendix B. Finally, we tabulate the frame overflow
probability pog, and the frame and bit error probabilities pegsg and pep

in decoded frames.

TABLE I
Scheme o] o, ol 3/2x6 3/24% Pos Pes
Forward 9/256 1.51 1.28 - - 0 2.4(-4) 1.
Forward 12/256 1.11 .95 - - 0 8.6(-4) 6.
Forward 15/256 .80 .65 - - 6.1(-4) 5.9(-3) 5.
Forward 18/256 .63 .49 - - 3.2(-3) 1.6(-2) 1.
Forward-
Backward 9/256 1.85 - 2.26 1.92 0 2.4(-4) 1
Forward-
Backward 12/256 1.51 - 1.66 1.42 0 7.3(-4) 4,
Forward-
Backward 15/256 1.07 - 1.20 .98 2.4(-4) 2.1(-3) 2.
Forward-
Backward 18/256 .79 - .94 .74 8.6(-4) 1.0(-2) 9.
Side-by-
Side 9/256 2.17 - 2.26 1.92 0 0
Side-by-
Side 12/256 1.66 - 1.66 1.42 0 2.4(-4)
Side-by-
Side 15/256 1.21 - 1.20 .98 0 8.6(-4)
Side-by- !
Side 18/256 .88 - .94 .74 4.9(-4) 3.8(-3)
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The first thing to be noted about these results is the consid-
erable disparity between the predicted Pareto exponent and that actually
observed, the latter being considerably superior at each error probability.
As this behavior is inconsistent with all the previous experiments of
which we know, (except those on the Pioneer code; see the Interim Report
[1966])pp. 41-42), it strongly suggests a defect in the simulation. We
spent some effort attempting to isolate this defect, considering the

following possibilities:

1. The frame length is only four times the constraint length
and could therefore be too short. However, we ran a number of runs with

a frame length four times greater (N=512) and got identical exponents.

2. Not all moves might be being counted. However, first of
all, the program is set up so that all moves end with either a forward
or backward transfer, involving one of two subroutines, so that each
gets apparently identical treatment. Moreover, if a fixed percentage of
computations were not counted, we would still observe the same exponent;
it would be necessary that the percentage of computations counted decrease
with the length of the run just so as to give a straight line on a log-log

plot. This seems unlikely.

3. The random number generator could be misbehaving. However,
in extensive test runs the first-order error probabilities were observed
to be correct; correlations tending to cluster errors would hurt the
decoder performance; so the only possibility is that some sort of anti-
correlation was introduced which aided the decoder. This also seems

unlikely.

Between the unlikelihood of our observed results and the unlikeli-
hood of the possible explanations, we are unsure which to choose. Fortun-
atley, we can develop our principal conclusions without a choice. We must
warn, however, that all our conclusions should be read in the light of

the possibility of a basic fault in the simulation.*

Accepting the observed exponent as valid, we find that our

hypothesis that the side-by-side scheme would have an exponent multiplier

*Note added in final typing. Further simulations show that the distribution
assumes the theoretical exponent o<, for larger L and lower Pr(C > L), and
the exponent <, observed in the lower ranges is due to counting computations
per frame rather than per bit. Our results may therefore be believed.
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of 3/2 is in complete agreement with the experimental results. At the
extreme probabilities, observed performance is slightly below the pre-
dicted, though within the range of experimental error; possibly this is
an indication of a real effect which sets in outside the neighborhood
of oX=1. We consider these results a confirmation of the substantial

validity of our horseback analysis methods.

The forward-backward simulations do not make quite as pretty
a picture, but are not at all discouraging. The bulk, but not all, of
the expected improvement in exponent was obtained at all probabilities
but the lowest; the difference from the side-by-side values is large
enough and consistent enough to be significant and not the result of
experimental error. Secondly, the curves are quite close to ideally
Pareto; there is only a hint in the lower regions of the two upper curves

of the complicated double-knee behavior foreseen in Appendix B.

Let us consider possible explanations for these two discre-
pancies between prediction and observation. To explain the inferior
exponent, the first possibility is that the backward code is consider-
ably inferior to the forward. Figure 7 displays the distribution of
computation measured for each; the backward code does have a larger
coefficient than the forward, but only a marginally worse exponent
(1.08 against 1.11), which would lead us to think that the same noise
bursts were dominating the distribution, but that the backward code
takes a longer search to surmount a burst than the forward; the exponent
of the combined scheme should then still be (3/2)e¢ . A much more
plausible explanation is that the pictures we drew of computational
failure patterns were a little too simple; there is some spread in the
lengths of the noise bursts which give a certain amount of computation,
and some may exceed a constraint length; two slightly separated noise
bursts are more than just twice as bad as one. Both these effects
would break down the independence of noise bursts effects and tend to
degrade the exponent, and this is probably what is happening. We shall

return to this point below.

The simplest explanation for the failure to observe knees
is that all our data fall in the regular part of the curve. To test
this hypothesis we ran the forward-backward scheme at p=12/256 with the

shortened codes of constraint length 24 and 15; we also ran forward
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simulations as references. All other parameters were the same as in
the previous simulations. The resulting distributions of computation
are graphed in Figures 8-5; Table II records t

or error. There were no overflows.

TABLE II

Scheme Constraint Length Pef Peb

Forward 33 8.6(-4) 6.7(-5)
Forward 24 1.2(-2) 7.6(-4)
Forward 15 3.6(-2) 2.1(-3)
Forward-Backward 33 7.3(-4) 4.7(-5)
Forward-Backward 24 5.5(-3) 2.9(-4)
Forward-Backward 15 2.4(-2) 1.3(-3)

Inspection of Figure 8 shows that shortening the constraint
length does not affect the ordinary distribution of computation, except
that in the lower regions the beginnings of a knee are observed, due to
many long searches being prematurely terminated by the occurrence of
undetected errors. The backwards-forwards curves, however, are negligibly
different from one another, except that the curve for the shortest con-
straint lengths begins to show a knee in the lower regions, which is
explained by the previous sentence. No tendency for the curves to
flatten out toward the original exponent & is observable above the knee;

the observed curves are simpler than those predicted.

We conclude that our horseback analysis methods are neither
far off nor totally satisfactory in this case. Most likely what is
happening is that some noise burst not of the critical density, but
peculiarly shaped for the maximum interference forward-backward decoding, .

is dominating the computational behavior, rather than the pattern
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which we postulated as the dominant one. Such a pattern might be, for

example, something like this:

[P n's Sl
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In any case the existence of the former pattern establishes an upper
bound of 3/2 e¢ , and this at least is consistent with the observed
results,

Returning to Tables I and II, we can comment that the proba-
bility of undetected error seems to decrease only slightly in the
concatenation schemes. This is consistent with the independent observa-
tion that the correlation between size of search and probability of error
in the search is rather weak. It is true that the longer the search,
the more probability of an undetected error, but there are many more short
searches than long, and this tendency for error probability to decrease is
mild for short searches. In Appendix A we hypothesized that the probability
that a search of L computations would result in an undetected error, with

a code constraint length of % , would be approximately

\?\— -V Y]
V- Qg g LegYy

this is the sort of weak dependence on L actually observed.

(3)

Let us proceed to conisider the observed distributions more
quantitatively. All the distributions are fitted very well by a two-

segment curve of the form
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P(e>L) = 4, LeL,,

= L) e,

(4)

where oC is the exponent already determined. Thus, all that remains

to specify the curve is the constant L, which determines the coefficient
and the break point. We see that, except at p=9/256, we have approximately
24 < L= 25 for all curves. If we recall that the units of computation

are 4 backward moves, then the distribution of backward moves Cp is

PO >L) = Plae>U) = 4, LB, ;
= (L/4Lg\’°: L’-‘\Le‘)

(5)
the distribution of total moves, C*:, forward and backward, in a frame
of length 128 is

PrlC > L) = (20, «+1§>2L) = 4, L=fLot X

= Lot \-=
(3o L= 8 Llo* 124

R

~ (L/S L°3~“, L>> L% o
(6)

Thus the coefficient is of the order of magnitude of one to two times
the frame length, as has been consistently observed in sequential decod-

ing simulations.

In the above, we have ignored the computations wasted on the
undecoded pair in the side-by-side and backward-forward schemes, because
if many information streams were encoded in parallel, this waste would
become negligible. We have also, with less justification, ignored the
overhead involved in time-sharing a sequential decoder between many

parallel streams, simply because this depends so much on implementation.
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With these exceptions, the coefficients for the concatenated and uncon-
catenated schemes are thus all of the order of a frame length, and to
good quantitative accuracy, the distribution of computation per bit has

a coefficient of nearly one:

‘p\r(C\..& >L) = L~ ““, L2 1)
™)

where M is the exponent multiplier.

Comparison of Concatenated and Unconcatenated Schemes

In this concluding section we shall try to compare concatenated
with unconcatenated schemes. We shall assume that per-bit computational
distribution is given by (7) for both, that any multiplier M can be
achieved with negligible rate. loss by sufficient complication, that the
constraint length is long enough to give a negligible probability of

error, that the probability of overflow per bit p, is given by

- et
Po = (ueY "
(8)
where p is the decoder speed advantage and B is its buffer size, and
finally that Mer£ 1 so that the average computational load is dominated

by searches just less than B, and given by

- M + 4
Pob® = (pB) .
(%)
(9) implies that

W= pepr®y
(10)
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taking the minimum value, we have the decoder parameters
D - -4
v = Yo
Mo -1

b= PR

(11)
Note that beyond the point where the buffer size is the inverse of the
desired overflow probability, additional size buys nothing; for e <1

the decoder becomes average-speed-limited.

Assume that one wants to buy about one decibel over ordinary
sequential decoding and thus wishes to use an & of about 1/2; suppose
further that a bit overflow probability p0=10's is satisfactory in either
case. (Actually, one would want a smaller probability for the concatenated
over the unconcatenated scheme, since more bits would probably be lost per

overflow with the former.) The alternatives are:
)
1. No concatenation; M=1, B=10 |, PL=105;
2. Concatenation; M=2,.;.B=105.>

At low bit rates, it is possible that the former is the easier solution.
On the other hand, suppose one wants an additional decibel, so that o<

is about 1/4; then some alternatives are:
1. No concatenation; M=1, B=105, rs=1015
2. Some concatenation; M=2, B=105, pu=105
3. Much concatenation; M=4,';B=105
In this case, some amount of concatenation is the only feasible approach.

We conclude that, although the brute force alternative of -
increasing the buffer size and decoder speed to their maxima will allow
penetration considerable below Rcomp at low bit rates, concatenation

schemes will be necessary if extreme requirements are to be met.
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